EG 2017 - Short Papers
Permanent URI for this collection
Browse
Browsing EG 2017 - Short Papers by Subject "I.3.3 [Computer Graphics]"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Fast Flow-based Distance Quantification and Interpolation for High-Resolution Density Distributions(The Eurographics Association, 2017) Frey, Steffen; Ertl, Thomas; Adrien Peytavie and Carles BoschWe present a GPU-targeted algorithm for the efficient direct computation of distances and interpolates between high-resolution density distributions without requiring any kind of intermediate representation like features. It is based on a previously published multi-core approach, and substantially improves its performance already on the same CPU hardware due to algorithmic improvements. As we explicitly target a manycore-friendly algorithm design, we further achieve significant speedups by running on a GPU. This paper quickly reviews the previous approach, and explicitly discusses the analysis of algorithmic characteristics as well as hardware architectural considerations on which our redesign was based. We demonstrate the performance and results of our technique by means of several transitions between volume data sets.Item Spline-based Decomposition of Streamed Particle Trajectories for Efficient Transfer and Analysis(The Eurographics Association, 2017) Scharnowski, Katrin; Frey, Steffen; Raffin, Bruno; Ertl, Thomas; Adrien Peytavie and Carles BoschWe introduce an approach for distributed processing and efficient storage of noisy particle trajectories, and present visual analysis techniques that directly operate on the generated representation. For efficient storage, we decompose individual trajectories into a smooth representation and a high frequency part. Our smooth representation is generated by fitting Hermite Splines to a series of time windows, adhering to a certain error bound. This directly supports scenarios involving in situ and streaming data processing. We show how the individually fitted splines can afterwards be combined into one spline posessing the same mathematical properties, i.e. C1 continuity as well as our error bound. The fitted splines are typically significantly smaller than the original data, and can therefore be used, e.g., for an online monitoring and analysis of distributed particle simulations. The high frequency part can be used to reconstruct the original data, or could also be discarded in scenarios with limited storage capabilities. Finally, we demonstrate the utility of our smooth representation for different analysis queries using real world data.