UDMV16: Eurographics Workshop on Urban Data Modelling and Visualisation
Permanent URI for this collection
Browse
Browsing UDMV16: Eurographics Workshop on Urban Data Modelling and Visualisation by Subject "I.3.3 [Computer Graphics]"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 3D Cities Rendering and Visualisation: A Web-Based Solution(The Eurographics Association, 2016) Haje, Noura El; Jessel, Jean-Pierre; Gaildrat, Véronique; Sanza, Cédric; Vincent Tourre and Filip Biljecki3D cities reconstruction and visualisation have always been a challenging area. Many software have been developed for constructing, editing and visualising 3D virtual cities. These software that allow the semi-automatic generation of virtual cities whether destined for visualisation, simulation and games have largely reduced the cost and charges of manual generation and sometimes their work outstrips the geometry to reach the semantics at a higher level. However, for faster and better performance, we are focusing on the visualisation and management of real-world data and more precisely geographic data for the web. This data is written in different standards and is largely available to users and cost free. This paper proposes a user intuitive solution based on the quite recent ArcGIS software Application Programming Interface (API) and CityGML (Geography Markup Language) in order to visualise and manage a real interactive editable city.Item 3D Model for Solar Energy Potential on Buildings from Urban LiDAR Data(The Eurographics Association, 2016) Bill, Andreas; Mohajeri, Nahid; Scartezzini, Jean-Louis; Vincent Tourre and Filip BiljeckiOne of the most promising sustainable energies that can be considered in urban environments is solar energy. A 3D model for solar energy potential on building envelopes based on urban LiDAR data was developed in this study. The developed algorithm can be used to model solar irradiation with high spatio-temporal resolution for roof-, facade-, and ground surfaces simultaneously, while taking into account the surrounding vegetation. Global solar irradiation is obtained for regularly spaced points on building- and ground surfaces with a spatial resolution of 1m2 and a time resolution of 1 hour. The algorithm has been implemented in Matlab and results were generated for two different test areas in the city of Geneva, Switzerland. The results for these specific areas show that, even in a dense urban area, the upper parts of south-east to south-west oriented facades receive 600 to 1000 kWh/m2/year of solar input, which is suitable for active solar installations. The results also show that south oriented facades can get higher solar input during winter months than the low inclined roof surfaces. This demonstrates that, depending on the latitude, facades can have a significant impact on the solar potential of buildings in urban areas, particularly for a sustainable energy planning application.Item Visibility of Building Exposed Surfaces for the Potential Application of Solar Panels: A Photometric Model(The Eurographics Association, 2016) Florio, Pietro; Roecker, C.; Probst, M. C. Munari; Scartezzini, Jean-Louis; Vincent Tourre and Filip BiljeckiUrban areas are facing a growing deployment of solar technologies on the built exposed surfaces such as roofs and façades. This transformation often occurs without consideration of the needed architectural quality, which depends on the context sensitivity and on solar technologies visibility from public space. The definition of visibility is explored in this paper, and major assessment methods are described. Specifically, a Cumulative Viewshed Algorithm (CVS) is compared with a novel backward raytracing Illuminance Metric Approach (ILL). Results from a test-case in Geneva show how CVS better describes visibility from a remote perspective, while ILL is a promising and fast method for closer viewpoints, especially in urban canyon environments.