Volume 38 (2019)
Permanent URI for this community
Browse
Browsing Volume 38 (2019) by Subject "aided design"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Structural Design Using Laplacian Shells(The Eurographics Association and John Wiley & Sons Ltd., 2019) Ulu, Erva; McCann, Jim; Kara, Levent Burak; Bommes, David and Huang, HuiWe introduce a method to design lightweight shell objects that are structurally robust under the external forces they may experience during use. Given an input 3D model and a general description of the external forces, our algorithm generates a structurally-sound minimum weight shell object. Our approach works by altering the local shell thickness repeatedly based on the stresses that develop inside the object. A key issue in shell design is that large thickness values might result in self-intersections on the inner boundary creating a significant computational challenge during optimization. To address this, we propose a shape parametrization based on the solution to the Laplace's equation that guarantees smooth and intersection-free shell boundaries. Combined with our gradient-free optimization algorithm, our method provides a practical solution to the structural design of hollow objects with a single inner cavity. We demonstrate our method on a variety of problems with arbitrary 3D models under complex force configurations and validate its performance with physical experiments.Item Subdivision Schemes for Quadrilateral Meshes with the Least Polar Artifact in Extraordinary Regions(The Eurographics Association and John Wiley & Sons Ltd., 2019) Ma, Yue; Ma, Weiyin; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonThis paper presents subdivision schemes with subdivision stencils near an extraordinary vertex that are free from or with substantially reduced polar artifact in extraordinary regions while maintaining the best possible bounded curvature at extraordinary positions. The subdivision stencils are firstly constructed to meet tangent plane continuity with bounded curvature at extraordinary positions. They are further optimized towards curvature continuity at an extraordinary position with additional measures for removing or for minimizing the polar artifact in extraordinary regions. The polar artifact for subdivision stencils of lower valences is removed by applying an additional constraint to the subdominant eigenvalue to be the same as that of subdivision at regular vertices, while the polar artifact for subdivision stencils of higher valances is substantially reduced by introducing an additional thin-plate energy function and a penalty function for maintaining the uniformity and regularity of the characteristic map. A new tuned subdivision scheme is introduced by replacing subdivision stencils of Catmull-Clark subdivision with that from this paper for extraordinary vertices of valences up to nine. We also compare the refined meshes and limit surface quality of the resulting subdivision scheme with that of Catmull-Clark subdivision and other tuned subdivision schemes. The results show that subdivision stencils from our method produce well behaved subdivision meshes with the least polar artifact while maintaining satisfactory limit surface quality.