JVRC12: Joint Virtual Reality Conference of ICAT - EGVE - EuroVR
Permanent URI for this collection
Browse
Browsing JVRC12: Joint Virtual Reality Conference of ICAT - EGVE - EuroVR by Subject "H.5.1 [Information Interfaces and Presentation (I.7)]"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Modifying an Identified Size of Objects Handled with Two Fingers Using Pseudo-Haptic Effects(The Eurographics Association, 2012) Ban, Yuki; Narumi, Takuji; Tanikawa, Tomohiro; Hirose, Michitaka; Ronan Boulic and Carolina Cruz-Neira and Kiyoshi Kiyokawa and David RobertsIn our research, we aim to construct a visuo-haptic system that employs pseudo-haptic effects to provide users with the sensation of touching virtual objects of varying shapes. Thus far, we have proved that it can be possible to modify an identified curved surface shapes or angle of edges by displacing the visual representation of the user's hand. However, this method has some limitations in that we can not adapt the way of touching with two or more fingers by visually displacing the user's hand. To solve this problem, we need to not only displace the visual representation of the user's hand but also deform it. Hence, in this paper, we focus on modifying the identification of the size of objects handled with two fingers. This was achieved by deforming the visual representation of the user's hand in order to construct a novel visuo-haptic system. We devised a video see-through system, which enables us to change the perception of the shape of an object that a user is visually touching. The visual representation of the user's hand is deformed as if the user were handling a visual object, when in actuality the user is handling an object of another size. Using this system we performed an experiment to investigate the effects of visuo-haptic interaction and evaluated its effectiveness. The result showed that the perceived size of objects handled with a thumb and other finger(s) could be modified if the difference between the size of physical and visual stimuli was in the range from -40% to 35%. This indicates that our method can be applied to visuo-haptic shape display system that we proposed.