Rendering - Experimental Ideas & Implementations
Permanent URI for this community
Browse
Browsing Rendering - Experimental Ideas & Implementations by Subject "Antialiasing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Practical Temporal and Stereoscopic Filtering for Real-time Ray Tracing(The Eurographics Association, 2023) Philippi, Henrik; Frisvad, Jeppe Revall; Jensen, Henrik Wann; Ritschel, Tobias; Weidlich, AndreaWe present a practical method for temporal and stereoscopic filtering that generates stereo-consistent rendering. Existing methods for stereoscopic rendering often reuse samples from one eye for the other or do averaging between the two eyes. These approaches fail in the presence of ray tracing effects such as specular reflections and refractions. We derive a new blending strategy that leverages variance to compute per pixel blending weights for both temporal and stereoscopic rendering. In the temporal domain, our method works well in a low noise context and is robust in the presence of inconsistent motion vectors, where existing methods such as temporal anti-aliasing (TAA) and deep learning super sampling (DLSS) produce artifacts. In the stereoscopic domain, our method provides a new way to ensure consistency between the left and right eyes. The stereoscopic version of our method can be used with our new temporal method or with existing methods such as DLSS and TAA. In all combinations, it reduces the error and significantly increases the consistency between the eyes making it practical for real-time settings such as virtual reality (VR).Item Real-Time Hybrid Hair Rendering(The Eurographics Association, 2019) Jansson, Erik Sven Vasconcelos; Chajdas, Matthäus G.; Lacroix, Jason; Ragnemalm, Ingemar; Boubekeur, Tamy and Sen, PradeepRendering hair is a challenging problem for real-time applications. Besides complex shading, the sheer amount of it poses a lot of problems, as a human scalp can have over 100,000 strands of hair, with animal fur often surpassing a million. For rendering, both strand-based and volume-based techniques have been used, but usually in isolation. In this work, we present a complete hair rendering solution based on a hybrid approach. The solution requires no pre-processing, making it a drop-in replacement, that combines the best of strand-based and volume-based rendering. Our approach uses this volume not only as a level-of-detail representation that is raymarched directly, but also to simulate global effects, like shadows and ambient occlusion in real-time.