Adaptive UW Image Deblurring via Sparse Representation
Loading...
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
We present an adaptive underwater (UW) image deblurring algorithm based on sparse representation where a blur estimation is used to guide the algorithm for the best image reconstruction. The strong blur in this medium is caused by forward scatter and is challenging since it increases by camera scene distance. It is a common practice to use methods such as dark channel prior to estimate the depth map, and use this information to improve the image quality. However, we found it not successful in the case of blur since these methods are based on haze phenomenon. We propose a simple but effective algorithm via sparse representation which establishes a blur strength estimation and uses this information for adaptive deblurring. Extensive experiments manifest the effectiveness of our method in case of small but challenging blur changes.
Description
@inproceedings{10.2312:egsh.20161010,
booktitle = {EG 2016 - Short Papers},
editor = {T. Bashford-Rogers and L. P. Santos},
title = {{Adaptive UW Image Deblurring via Sparse Representation}},
author = {Farhadifard, Fahimeh and Radolko, Martin},
year = {2016},
publisher = {The Eurographics Association},
ISSN = {1017-4656},
ISBN = {},
DOI = {10.2312/egsh.20161010}
}