Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust Denoising

dc.contributor.authorHanika, Johannesen_US
dc.contributor.authorDammertz, Holgeren_US
dc.contributor.authorLensch, Hendriken_US
dc.contributor.editorBing-Yu Chen, Jan Kautz, Tong-Yee Lee, and Ming C. Linen_US
dc.date.accessioned2015-02-27T16:12:57Z
dc.date.available2015-02-27T16:12:57Z
dc.date.issued2011en_US
dc.description.abstractIn this paper we extend the edge-avoiding à-trous wavelet transform for local contrast enhancement while avoiding common artifacts such as halos and gradient reversals. We show that this algorithm is a highly efficient and robust tool for image manipulation based on multi-scale decompositions. It can achieve comparable results to previous high-quality methods while being orders of magnitude faster and simpler to implement. Our method is much more robust than previously known fast methods by avoiding aliasing and ringing which is achieved by introducing a data-adaptive edge weight. Operating on multi-scale, our algorithm can directly include the BayesShrink method for denoising. For moderate noise levels our edge-optimized technique consistently improves separation of signal and noise.en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.identifier.doi10.1111/j.1467-8659.2011.02054.xen_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2011.02054.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.titleEdge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust Denoisingen_US
Files
Collections