STRONGER: Simple TRajectory-based ONline GEsture Recognizer
dc.contributor.author | Emporio, Marco | en_US |
dc.contributor.author | Caputo, Ariel | en_US |
dc.contributor.author | Giachetti, Andrea | en_US |
dc.contributor.editor | Frosini, Patrizio and Giorgi, Daniela and Melzi, Simone and Rodolà , Emanuele | en_US |
dc.date.accessioned | 2021-10-25T11:53:39Z | |
dc.date.available | 2021-10-25T11:53:39Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this paper, we present STRONGER, a client-server solution for the online gesture recognition from captured hands' joints sequences. The system leverages a CNN-based recognizer improving current state-of-the-art solutions for segmented gestures classification, trained and tested for the online gesture recognition task on a recent benchmark including heterogeneous gestures. The recognizer provides good classification accuracy and a limited number of false positives on most of the gesture classes of the benchmark used and has been used to create a demo application in a Mixed Reality scenario using an Hololens 2 optical see through Head-Mounted Display with hand tracking capability. | en_US |
dc.description.sectionheaders | Augmented and Virtual Reality | |
dc.description.seriesinformation | Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference | |
dc.identifier.doi | 10.2312/stag.20211481 | |
dc.identifier.isbn | 978-3-03868-165-6 | |
dc.identifier.issn | 2617-4855 | |
dc.identifier.pages | 109-117 | |
dc.identifier.uri | https://doi.org/10.2312/stag.20211481 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/stag20211481 | |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Computing methodologies | |
dc.subject | Neural networks | |
dc.subject | Human | |
dc.subject | centered computing | |
dc.subject | Gestural input | |
dc.title | STRONGER: Simple TRajectory-based ONline GEsture Recognizer | en_US |
Files
Original bundle
1 - 1 of 1