Curve Density Estimates

dc.contributor.authorLampe, Ove Daaeen_US
dc.contributor.authorHauser, Helwigen_US
dc.contributor.editorH. Hauser, H. Pfister, and J. J. van Wijken_US
dc.date.accessioned2014-02-21T20:23:16Z
dc.date.available2014-02-21T20:23:16Z
dc.date.issued2011en_US
dc.description.abstractIn this work, we present a technique based on kernel density estimation for rendering smooth curves. With this approach, we produce uncluttered and expressive pictures, revealing frequency information about one, or, multiple curves, independent of the level of detail in the data, the zoom level, and the screen resolution. With this technique the visual representation scales seamlessly from an exact line drawing, (for low-frequency/low-complexity curves) to a probability density estimate for more intricate situations. This scale-independence facilitates displays based on non-linear time, enabling high-resolution accuracy of recent values, accompanied by long historical series for context. We demonstrate the functionality of this approach in the context of prediction scenarios and in the context of streaming data.en_US
dc.description.number3en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume30en_US
dc.identifier.doi10.1111/j.1467-8659.2011.01912.xen_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2011.01912.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/Image Generationen_US
dc.subjectLine and curve generationen_US
dc.titleCurve Density Estimatesen_US
Files