Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion

dc.contributor.authorCordonnier, Guillaumeen_US
dc.contributor.authorBraun, Jeanen_US
dc.contributor.authorCani, Marie-Pauleen_US
dc.contributor.authorBenes, Bedrichen_US
dc.contributor.authorGalin, Éricen_US
dc.contributor.authorPeytavie, Adrienen_US
dc.contributor.authorGuérin, Éricen_US
dc.contributor.editorJoaquim Jorge and Ming Linen_US
dc.date.accessioned2016-04-26T08:37:51Z
dc.date.available2016-04-26T08:37:51Z
dc.date.issued2016en_US
dc.description.abstractAt large scale, landscapes result from the combination of two major processes: tectonics which generate the main relief through crust uplift, and weather which accounts for erosion. This paper presents the first method in computer graphics that combines uplift and hydraulic erosion to generate visually plausible terrains. Given a user-painted uplift map, we generate a stream graph over the entire domain embedding elevation information and stream flow. Our approach relies on the stream power equation introduced in geology for hydraulic erosion. By combining crust uplift and stream power erosion we generate large realistic terrains at a low computational cost. Finally, we convert this graph into a digital elevation model by blending landform feature kernels whose parameters are derived from the information in the graph. Our method gives high-level control over the large scale dendritic structures of the resulting river networks, watersheds, and mountains ridges.en_US
dc.description.number2en_US
dc.description.sectionheadersTerrains & Fluidsen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume35en_US
dc.identifier.doi10.1111/cgf.12820en_US
dc.identifier.issn1467-8659en_US
dc.identifier.pages165-175en_US
dc.identifier.urihttps://doi.org/10.1111/cgf.12820en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.titleLarge Scale Terrain Generation from Tectonic Uplift and Fluvial Erosionen_US
Files