Neural Moment Transparency

dc.contributor.authorTsopouridis, Grigorisen_US
dc.contributor.authorVasilakis, Andreas Alexandrosen_US
dc.contributor.authorFudos, Ioannisen_US
dc.contributor.editorHu, Ruizhenen_US
dc.contributor.editorCharalambous, Panayiotisen_US
dc.date.accessioned2024-04-30T08:19:17Z
dc.date.available2024-04-30T08:19:17Z
dc.date.issued2024
dc.description.abstractWe have developed a machine learning approach to efficiently compute per-fragment transmittance, using transmittance composed and accumulated with moment statistics, on a fragment shader. Our approach excels in achieving superior visual accuracy for computing order-independent transparency (OIT) in scenes with high depth complexity when compared to prior art.en_US
dc.description.sectionheadersRendering and Optimization
dc.description.seriesinformationEurographics 2024 - Short Papers
dc.identifier.doi10.2312/egs.20241029
dc.identifier.isbn978-3-03868-237-0
dc.identifier.issn1017-4656
dc.identifier.pages4 pages
dc.identifier.urihttps://doi.org/10.2312/egs.20241029
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/egs20241029
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Neural networks; Rasterization; Visibility
dc.subjectComputing methodologies → Neural networks
dc.subjectRasterization
dc.subjectVisibility
dc.titleNeural Moment Transparencyen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
14_egs20241029.pdf
Size:
7.12 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
short1042.mp4
Size:
87.35 MB
Format:
Video MP4