The Dependent Vectors Operator

dc.contributor.authorHofmann, Lutzen_US
dc.contributor.authorSadlo, Filipen_US
dc.contributor.editorGleicher, Michael and Viola, Ivan and Leitte, Heikeen_US
dc.date.accessioned2019-06-02T18:27:41Z
dc.date.available2019-06-02T18:27:41Z
dc.date.issued2019
dc.description.abstractIn this paper, we generalize the parallel vectors operator due to Peikert and Roth to arbitrary dimension, i.e., to four-dimensional fields and beyond. Whereas the original operator tested for parallelism of two (derived) 2D or 3D vector fields, we reformulate the concept in terms of linear dependency of sets of vector fields, and propose a generic technique to extract and filter the solution manifolds.We exemplify our approach for vortex cores, bifurcations, and ridges as well as valleys in higher dimensions.en_US
dc.description.number3
dc.description.sectionheadersVectors and Features
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume38
dc.identifier.doi10.1111/cgf.13687
dc.identifier.issn1467-8659
dc.identifier.pages261-272
dc.identifier.urihttps://doi.org/10.1111/cgf.13687
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13687
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectHuman
dc.subjectcentered computing → Visualization techniques
dc.subjectApplied computing → Mathematics and statistics
dc.titleThe Dependent Vectors Operatoren_US
Files
Collections