Semantic-Aware Generative Approach for Image Inpainting

dc.contributor.authorChanda, Deepankaren_US
dc.contributor.authorKalantari, Nima Khademien_US
dc.contributor.editorBousseau, Adrien and McGuire, Morganen_US
dc.date.accessioned2021-07-12T12:13:14Z
dc.date.available2021-07-12T12:13:14Z
dc.date.issued2021
dc.description.abstractWe propose a semantic-aware generative method for image inpainting. Specifically, we divide the inpainting process into two tasks; estimating the semantic information inside the masked areas and inpainting these regions using the semantic information. To effectively utilize the semantic information, we inject them into the generator through conditional feature modulation. Furthermore, we introduce an adversarial framework with dual discriminators to train our generator. In our system, an input consistency discriminator evaluates the inpainted region to best match the surrounding unmasked areas and a semantic consistency discriminator assesses whether the generated image is consistent with the semantic labels. To obtain the complete input semantic map, we first use a pre-trained network to compute the semantic map in the unmasked areas and inpaint it using a network trained in an adversarial manner. We compare our approach against state-of-the-art methods and show significant improvement in the visual quality of the results. Furthermore, we demonstrate the ability of our system to generate user-desired results by allowing a user to manually edit the estimated semantic map.en_US
dc.description.sectionheadersImage and Video Editing
dc.description.seriesinformationEurographics Symposium on Rendering - DL-only Track
dc.identifier.doi10.2312/sr.20211291
dc.identifier.isbn978-3-03868-157-1
dc.identifier.issn1727-3463
dc.identifier.pages61-72
dc.identifier.urihttps://doi.org/10.2312/sr.20211291
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sr20211291
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies --> Computational photography
dc.subjectImage processing
dc.titleSemantic-Aware Generative Approach for Image Inpaintingen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
061-072.pdf
Size:
83.25 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1020_mm.mp4
Size:
160.05 MB
Format:
Unknown data format
Loading...
Thumbnail Image
Name:
paper1020_mm.pdf
Size:
29.13 MB
Format:
Adobe Portable Document Format