Exploring Frictional Surface Properties for Haptic-Based Online Shopping

dc.contributor.authorBamarouf, Yasser A.en_US
dc.contributor.authorSmith, Shamus P.en_US
dc.contributor.editorSabine Coquillart and Anthony Steed and Greg Welchen_US
dc.date.accessioned2013-10-31T09:35:29Z
dc.date.available2013-10-31T09:35:29Z
dc.date.issued2011en_US
dc.description.abstractThe sense of touch is important in our everyday lives and its absence makes it difficult to explore and manipulate everyday objects. Existing online shopping practice lacks the opportunity for physical evaluation, that people often use and value when making product buying decisions. The work described here investigates differential thresholds for simulated frictional surfaces, an important haptic feature for product comparison. One aim is to gain insight into the design space for multiple comparisons of virtual surfaces as will be needed to support online shopping. A user study has been conducted to explore differential thresholds in stick-slip frictional force. The study demonstrates that, on average, a dynamic friction threshold of 14.1% is needed to differentiate between two frictional surfaces. Moreover, it has shown, for a Phantom Omni, that the maximum number of unique comparable dynamic coefficient of friction combinations available is twenty eight, at any given level of static coefficient of friction. The results are a step towards defining surface differential thresholds for online shopping and other haptic-based applications that require multiple surface comparisons.en_US
dc.description.seriesinformationJoint Virtual Reality Conference of EGVE - EuroVRen_US
dc.identifier.isbn978-3-905674-33-0en_US
dc.identifier.issn1727-530Xen_US
dc.identifier.urihttps://doi.org/10.2312/EGVE/JVRC11/047-054en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial, augmented, and virtual realities; H.5.2 [Information Interfaces and Presentation]: User Interfaces-Haptic I/O H.5.3 [Information Interfaces and Presentation]: Group and Organization Interfaces-Web-based interactionen_US
dc.titleExploring Frictional Surface Properties for Haptic-Based Online Shoppingen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
047-054.pdf
Size:
327.46 KB
Format:
Adobe Portable Document Format