Inertial Steady 2D Vector Field Topology

dc.contributor.authorGünther, Tobiasen_US
dc.contributor.authorTheisel, Holgeren_US
dc.contributor.editorJoaquim Jorge and Ming Linen_US
dc.date.accessioned2016-04-26T08:38:55Z
dc.date.available2016-04-26T08:38:55Z
dc.date.issued2016en_US
dc.description.abstractVector field topology is a powerful and matured tool for the study of the asymptotic behavior of tracer particles in steady flows. Yet, it does not capture the behavior of finite-sized particles, because they develop inertia and do not move tangential to the flow. In this paper, we use the fact that the trajectories of inertial particles can be described as tangent curves of a higher dimensional vector field. Using this, we conduct a full classification of the first-order critical points of this higher dimensional flow, and devise a method to their efficient extraction. Further, we interactively visualize the asymptotic behavior of finite-sized particles by a glyph visualization that encodes the outcome of any initial condition of the governing ODE, i.e., for a varying initial position and/or initial velocity. With this, we present a first approach to extend traditional vector field topology to the inertial case.en_US
dc.description.number2en_US
dc.description.sectionheadersVisualizationen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume35en_US
dc.identifier.doi10.1111/cgf.12846en_US
dc.identifier.issn1467-8659en_US
dc.identifier.pages455-466en_US
dc.identifier.urihttps://doi.org/10.1111/cgf.12846en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/Image Generationen_US
dc.subjectLine and curve generationen_US
dc.titleInertial Steady 2D Vector Field Topologyen_US
Files