GPU-Based Contact-Aware Trajectory Optimization Using A Smooth Force Model

Loading...
Thumbnail Image
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
ACM
Abstract
We present a new formulation of trajectory optimization for articulated bodies. Our approach uses a fully differentiable dynamic model of the articulated body, and a smooth force model that approximates all kinds of internal/external forces as a smooth function of the articulated body's kinematic state. Our formulation is contact-aware and its complexity is not dependent on the contact positions or the number of contacts. Furthermore, we exploit the block-tridiagonal structure of the Hessian matrix and present a highly parallel Newton-type trajectory optimizer that maps well to GPU architectures. Moreover, we use a Markovian regularization term to overcome the local minima problems in the optimization formulation. We highlight the performance of our approach using a set of locomotion tasks performed by characters with 15 − 35 DOFs. In practice, our GPU-based algorithm running on a NVIDIA TITAN-X GPU provides more than 30× speedup over a multi-core CPU-based implementation running on Intel Xeon E5-1620 CPU. In addition, we demonstrate applications of our method on various applications such as contact-rich motion planning, receding-horizon control, and motion graph construction.
Description

        
@inproceedings{
10.1145:3309486.3340246
, booktitle = {
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation
}, editor = {
Batty, Christopher and Huang, Jin
}, title = {{
GPU-Based Contact-Aware Trajectory Optimization Using A Smooth Force Model
}}, author = {
Pan, Zherong
and
Ren, Bo
and
Manocha, Dinesh
}, year = {
2019
}, publisher = {
ACM
}, ISSN = {
1727-5288
}, ISBN = {
978-1-4503-6677-9
}, DOI = {
10.1145/3309486.3340246
} }
Citation