Mesh Parameterization: a Viewpoint from Constant Mean Curvature Surfaces
dc.contributor.author | Zhao, Hui | en_US |
dc.contributor.author | Su, Kehua | en_US |
dc.contributor.author | Li, Chenchen | en_US |
dc.contributor.author | Zhang, Boyu | en_US |
dc.contributor.author | Liu, Shirao | en_US |
dc.contributor.author | Yang, Lei | en_US |
dc.contributor.author | Lei, Na | en_US |
dc.contributor.author | Gortler, Steven J. | en_US |
dc.contributor.author | Gu, Xianfeng | en_US |
dc.contributor.editor | Fu, Hongbo and Ghosh, Abhijeet and Kopf, Johannes | en_US |
dc.date.accessioned | 2018-10-07T14:32:00Z | |
dc.date.available | 2018-10-07T14:32:00Z | |
dc.date.issued | 2018 | |
dc.description.abstract | We present a unified mesh paramterization algorithm for both planar and spheric domains based on mesh deformation. Unlike previous methods, our approach can produce intermediate frames from the original to target meshes. We derive and define a novel geometric flow: unit normal flow(UNF) and prove that if unit normal flow converges, it will deform a surface to a constant mean curvature(CMC) surface, such as plane and sphere. Our method works by deforming meshes of disk topology to planes, meshes of spheric topology to spheres. The unit normal flow we propose also suggests a potential direction for creating CMC surfaces. | en_US |
dc.description.sectionheaders | Parameterization and Surface Texture | |
dc.description.seriesinformation | Pacific Graphics Short Papers | |
dc.identifier.doi | 10.2312/pg.20181272 | |
dc.identifier.isbn | 978-3-03868-073-4 | |
dc.identifier.pages | 25-28 | |
dc.identifier.uri | https://doi.org/10.2312/pg.20181272 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/pg20181272 | |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Computing methodologies | |
dc.subject | Shape modeling | |
dc.subject | Mesh models | |
dc.subject | Mesh geometry models | |
dc.title | Mesh Parameterization: a Viewpoint from Constant Mean Curvature Surfaces | en_US |
Files
Original bundle
1 - 1 of 1