Exploration and Analysis of Image-base Simulation Ensembles

dc.contributor.authorDahshan, Maien_US
dc.contributor.authorTurton, Terece L.en_US
dc.contributor.authorPolys, Nicholasen_US
dc.contributor.editorKrone, Michaelen_US
dc.contributor.editorLenti, Simoneen_US
dc.contributor.editorSchmidt, Johannaen_US
dc.date.accessioned2022-06-02T15:29:17Z
dc.date.available2022-06-02T15:29:17Z
dc.date.issued2022
dc.description.abstractScientists run simulation ensembles to study the behavior of a phenomenon using varying initial conditions or input parameters. However, the I/O bottlenecks hinder performing large-scale multidimensional simulations. In situ visualization approaches address the variability of I/O performance by processing output data during simulation time and saving predetermined visualizations in image databases. This poster proposes a visual analytics approach to exploring and analyzing image-based simulation ensembles, taking advantage of semantic interaction, feature extraction, and deep learning techniques. Our approach uses deep learning and local feature techniques to learn image features and pass them along with the input parameters to the visualization pipeline for in-depth exploration and analysis of parameter and ensemble spaces simultaneously.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationEuroVis 2022 - Posters
dc.identifier.doi10.2312/evp.20221128
dc.identifier.isbn978-3-03868-185-4
dc.identifier.pages91-93
dc.identifier.pages3 pages
dc.identifier.urihttps://doi.org/10.2312/evp.20221128
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evp20221128
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies --> Scientific visualization; Visual analytics; Image processing
dc.subjectComputing methodologies
dc.subjectScientific visualization
dc.subjectVisual analytics
dc.subjectImage processing
dc.titleExploration and Analysis of Image-base Simulation Ensemblesen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
091-093.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2526-file1.zip
Size:
273.52 MB
Format:
Zip file