FrictGAN: Frictional Signal Generation from Fabric Texture Images using Generative Adversarial Network

dc.contributor.authorCai, Shaoyuen_US
dc.contributor.authorBan, Yukien_US
dc.contributor.authorNarumi, Takujien_US
dc.contributor.authorZhu, Keningen_US
dc.contributor.editorArgelaguet, Ferran and McMahan, Ryan and Sugimoto, Makien_US
dc.date.accessioned2020-12-01T16:10:12Z
dc.date.available2020-12-01T16:10:12Z
dc.date.issued2020
dc.description.abstractThe electrostatic tactile display could render the tactile feeling of different haptic texture surfaces by generating the frictional force through voltage modulation when a finger is sliding on the display surface. However, it is challenging to prepare and fine-tune the appropriate frictional signals for haptic design and texture simulation. We present FrictGAN, a deep-learningbased framework to synthesize frictional signals for electrostatic tactile displays from fabric texture images. Leveraging GANs (Generative Adversarial Networks), FrictGAN could generate the displacement-series data of frictional coefficients for the electrostatic tactile display to simulate the tactile feedback of fabric material. Our preliminary experimental results showed that FrictGAN could achieve considerable performance on frictional signal generation based on the input images of fabric textures.en_US
dc.description.sectionheadersHaptic and Visual Perception
dc.description.seriesinformationICAT-EGVE 2020 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments
dc.identifier.doi10.2312/egve.20201254
dc.identifier.isbn978-3-03868-111-3
dc.identifier.issn1727-530X
dc.identifier.pages11-15
dc.identifier.urihttps://doi.org/10.2312/egve.20201254
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egve20201254
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectGenerative adversarial network
dc.subjectHuman centered computing
dc.subjectVirtual reality
dc.titleFrictGAN: Frictional Signal Generation from Fabric Texture Images using Generative Adversarial Networken_US
Files
Collections