Automatic 3D Facial Region Retrieval from Multi-pose Facial Datasets

dc.contributor.authorPerakis, Panagiotisen_US
dc.contributor.authorTheoharis, Theoharisen_US
dc.contributor.authorPassalis, Georgiosen_US
dc.contributor.authorKakadiaris, Ioannis A.en_US
dc.contributor.editorMichela Spagnuolo and Ioannis Pratikakis and Remco Veltkamp and Theoharis Theoharisen_US
dc.date.accessioned2013-10-21T18:00:32Z
dc.date.available2013-10-21T18:00:32Z
dc.date.issued2009en_US
dc.description.abstractThe availability of 3D facial datasets is rapidly growing, mainly as a result of medical and biometric applications. These applications often require the retrieval of specific facial areas (such as the nasal region). The most crucial step in facial region retrieval is the detection of key 3D facial landmarks (e.g., the nose tip). A key advantage of 3D facial data over 2D facial data is their pose invariance. Any landmark detection method must therefore also be pose invariant. In this paper, we present the first 3D facial landmark detection method that works in datasets with pose rotations of up to 80 degree around the y-axis. It is tested on the largest publicly available 3D facial datasets, for which we have created a ground truth by manually annotating the 3D landmarks. Landmarks automatically detected by our method are then used to robustly retrieve facial regions from 3D facial datasets.en_US
dc.description.seriesinformationEurographics 2009 Workshop on 3D Object Retrievalen_US
dc.identifier.isbn978-3-905674-16-3en_US
dc.identifier.issn1997-0463en_US
dc.identifier.urihttps://doi.org/10.2312/3DOR/3DOR09/037-044en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval - Selection Process; I.4.6 [Image Processing and Computer Vision]: Segmentation - Edge and Feature Detectionen_US
dc.titleAutomatic 3D Facial Region Retrieval from Multi-pose Facial Datasetsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
037-044.pdf
Size:
707.05 KB
Format:
Adobe Portable Document Format
Collections