Real-Time Patch-Based Stylization of Portraits Using Generative Adversarial Network

dc.contributor.authorFutschik, Daviden_US
dc.contributor.authorChai, Mengleien_US
dc.contributor.authorCao, Chenen_US
dc.contributor.authorMa, Chongyangen_US
dc.contributor.authorStoliar, Alekseien_US
dc.contributor.authorKorolev, Sergeyen_US
dc.contributor.authorTulyakov, Sergeyen_US
dc.contributor.authorKučera, Michalen_US
dc.contributor.authorSýkora, Danielen_US
dc.contributor.editorKaplan, Craig S. and Forbes, Angus and DiVerdi, Stephenen_US
dc.date.accessioned2019-05-20T09:49:46Z
dc.date.available2019-05-20T09:49:46Z
dc.date.issued2019
dc.description.abstractWe present a learning-based style transfer algorithm for human portraits which significantly outperforms current state-of-the-art in computational overhead while still maintaining comparable visual quality. We show how to design a conditional generative adversarial network capable to reproduce the output of Fišer et al.'s patch-based method [FJS*17] that is slow to compute but can deliver state-of-the-art visual quality. Since the resulting end-to-end network can be evaluated quickly on current consumer GPUs, our solution enables first real-time high-quality style transfer to facial videos that runs at interactive frame rates. Moreover, in cases when the original algorithmic approach of Fišer et al. fails our network can provide a more visually pleasing result thanks to generalization. We demonstrate the practical utility of our approach on a variety of different styles and target subjects.en_US
dc.description.sectionheadersLearned Styles
dc.description.seriesinformationACM/EG Expressive Symposium
dc.identifier.doi10.2312/exp.20191074
dc.identifier.isbn978-3-03868-078-9
dc.identifier.pages33-42
dc.identifier.urihttps://doi.org/10.2312/exp.20191074
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/exp20191074
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectNon
dc.subjectphotorealistic rendering
dc.titleReal-Time Patch-Based Stylization of Portraits Using Generative Adversarial Networken_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
033-042.pdf
Size:
17.75 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
video.mp4
Size:
7.13 MB
Format:
Unknown data format
Collections