Spectral Analysis Driven Sparse Matching of 3D Shapes

dc.contributor.authorDarom, Talen_US
dc.contributor.authorKeller, Yosien_US
dc.contributor.editorM. Spagnuolo and M. Bronstein and A. Bronstein and A. Ferreiraen_US
dc.date.accessioned2013-09-24T10:53:07Z
dc.date.available2013-09-24T10:53:07Z
dc.date.issued2012en_US
dc.description.abstractIn this work we present an approach for matching three-dimensional mesh objects related by isometric transfor- mations and scaling. We propose to utilize the Scale invariant Scale-DoG detector and Local Depth SIFT mesh descriptor, to derive a statistical voting-based scheme to robustly estimate the scale ratio between the registered meshes. This paves the way to formulating a novel non-rigid mesh registration scheme, by matching sets of sparse salient feature points using spectral graph matching. The resulting approach is shown to compare favorably with previous state-of-the-art approaches in registering meshes related by partial alignment, while being a few orders of magnitude faster.en_US
dc.description.sectionheadersPostersen_US
dc.description.seriesinformationEurographics Workshop on 3D Object Retrievalen_US
dc.identifier.isbn978-3-905674-36-1en_US
dc.identifier.issn1997-0463en_US
dc.identifier.urihttps://doi.org/10.2312/3DOR/3DOR12/059-062en_US
dc.publisherThe Eurographics Associationen_US
dc.titleSpectral Analysis Driven Sparse Matching of 3D Shapesen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
059-062.pdf
Size:
575.97 KB
Format:
Adobe Portable Document Format
Collections