An Accelerated Online PCA with O(1) Complexity for Learning Molecular Dynamics Data
dc.contributor.author | Alakkari, Salaheddin | en_US |
dc.contributor.author | Dingliana, John | en_US |
dc.contributor.editor | Jan Byska and Michael Krone and Björn Sommer | en_US |
dc.date.accessioned | 2018-06-02T17:49:29Z | |
dc.date.available | 2018-06-02T17:49:29Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In this paper, we discuss the problem of decomposing complex and large Molecular Dynamics trajectory data into simple low-resolution representation using Principal Component Analysis (PCA). Since applying standard PCA for such large data is expensive in terms of space and time complexity, we propose a novel online PCA algorithm with O(1) complexity per new timestep. Our approach is able to approximate the full dimensional eigenspace per new time-step of MD simulation. Experimental results indicate that our technique provides an effective approximation to the original eigenspace computed using standard PCA in batch mode. | en_US |
dc.description.sectionheaders | Computational Analysis of Dynamic Molecular Data | |
dc.description.seriesinformation | Workshop on Molecular Graphics and Visual Analysis of Molecular Data | |
dc.identifier.doi | 10.2312/molva.20181100 | |
dc.identifier.isbn | 978-3-03868-061-1 | |
dc.identifier.pages | 1-8 | |
dc.identifier.uri | https://doi.org/10.2312/molva.20181100 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/molva20181100 | |
dc.publisher | The Eurographics Association | en_US |
dc.title | An Accelerated Online PCA with O(1) Complexity for Learning Molecular Dynamics Data | en_US |
Files
Original bundle
1 - 1 of 1