LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud

dc.contributor.authorXiao, Zijianen_US
dc.contributor.authorZhou, Tianchenen_US
dc.contributor.authorYao, Lien_US
dc.contributor.editorChen, Renjieen_US
dc.contributor.editorRitschel, Tobiasen_US
dc.contributor.editorWhiting, Emilyen_US
dc.date.accessioned2024-10-13T18:09:51Z
dc.date.available2024-10-13T18:09:51Z
dc.date.issued2024
dc.description.abstractWe introduce LGSur-Net, an end-to-end deep learning architecture, engineered for the upsampling of sparse point clouds. LGSur-Net harnesses a trainable Gaussian local representation by positioning a series of Gaussian functions on an oriented plane, complemented by the optimization of individual covariance matrices. The integration of parametric factors allows for the encoding of the plane's rotational dynamics and Gaussian weightings into a linear transformation matrix. Then we extract the feature maps from the point cloud and its adjoining edges and learn the local Gaussian depictions to accurately model the shape's local geometry through an attention-based network. The Gaussian representation's inherent high-order continuity endows LGSur-Net with the natural ability to predict surface normals and support upsampling to any specified resolution. Comprehensive experiments validate that LGSur-Net efficiently learns from sparse data inputs, surpassing the performance of existing state-of-the-art upsampling methods. Our code is publicly available at https://github.com/Rangiant5b72/LGSur-Net.en_US
dc.description.number7
dc.description.sectionheadersNeural Radiance Fields and Gaussian Splatting
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume43
dc.identifier.doi10.1111/cgf.15257
dc.identifier.issn1467-8659
dc.identifier.pages10 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.15257
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf15257
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies → Point-based models; Neural networks; Shape analysis
dc.subjectComputing methodologies → Point
dc.subjectbased models
dc.subjectNeural networks
dc.subjectShape analysis
dc.titleLGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Clouden_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
cgf15257.pdf
Size:
5.55 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1369_mm.pdf
Size:
448.51 KB
Format:
Adobe Portable Document Format
Collections