A Selective Refinement Approach for Computing the Distance Functions of Curves

dc.contributor.authorLaney, Daniel E.en_US
dc.contributor.authorDuchaineau, Mark A.en_US
dc.contributor.authorMax, Nelson L.en_US
dc.contributor.editorDavid S. Ebert and Jean M. Favre and Ronald Peikerten_US
dc.date.accessioned2014-01-30T06:46:00Z
dc.date.available2014-01-30T06:46:00Z
dc.date.issued2001en_US
dc.description.abstractWe present an adaptive signed distance transform algorithm for curves in the plane. A hierarchy of bounding boxes is required for the input curves. We demonstrate the algorithm on the isocontours of a turbulence simulation. The algorithm provides guaranteed error bounds with a selective refinement approach. The domain over which the signed distance function is desired is adaptively triangulated and piecewise discontinuous linear approximations are constructed within each triangle. The resulting transform performs work only were requested and does not rely on a preset sampling rate or other constraints.en_US
dc.description.seriesinformationEurographics / IEEE VGTC Symposium on Visualizationen_US
dc.identifier.isbn3-211-83674-8en_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttps://doi.org/10.2312/VisSym/VisSym01/213-222en_US
dc.publisherThe Eurographics Associationen_US
dc.titleA Selective Refinement Approach for Computing the Distance Functions of Curvesen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
213-222.pdf
Size:
445.8 KB
Format:
Adobe Portable Document Format