Taming Liquids for Rapidly Changing Targets
dc.contributor.author | Shi, Lin | en_US |
dc.contributor.author | Yu, Yizhou | en_US |
dc.contributor.editor | D. Terzopoulos and V. Zordan and K. Anjyo and P. Faloutsos | en_US |
dc.date.accessioned | 2014-01-29T07:12:31Z | |
dc.date.available | 2014-01-29T07:12:31Z | |
dc.date.issued | 2005 | en_US |
dc.description.abstract | Following rapidly changing target objects is a challenging problem in fluid control, especially when the natural fluid motion should be preserved. The fluid should be responsive to the changing configuration of the target and, at the same time, its motion should not be overconstrained. In this paper, we introduce an efficient and effective solution by applying two different external force fields. The first one is a feedback force field which compensates for discrepancies in both shape and velocity. Its shape component is designed to be divergence free so that it can survive the velocity projection step. The second one is the gradient field of a potential function defined by the shape and skeletion of the target object. Our experiments indicate a mixture of these two force fields can achieve desirable and pleasing effects. | en_US |
dc.description.seriesinformation | Symposium on Computer Animation | en_US |
dc.identifier.isbn | 1-59593-198-8 | en_US |
dc.identifier.issn | 1727-5288 | en_US |
dc.identifier.uri | https://doi.org/10.2312/SCA/SCA05/229-236 | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling I.3.7 [Computer Graphics]: Animation I.6.8 [Simulation and Modeling]: Animation | en_US |
dc.title | Taming Liquids for Rapidly Changing Targets | en_US |