DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition

dc.contributor.authorLiu, Jiachengen_US
dc.contributor.authorZhou, Hangen_US
dc.contributor.authorWei, Shidaen_US
dc.contributor.authorMa, Ruien_US
dc.contributor.editorChen, Renjieen_US
dc.contributor.editorRitschel, Tobiasen_US
dc.contributor.editorWhiting, Emilyen_US
dc.date.accessioned2024-10-13T18:09:21Z
dc.date.available2024-10-13T18:09:21Z
dc.date.issued2024
dc.description.abstractIn this paper, we address the problem of plausible object placement for the challenging task of realistic image composition. We propose DiffPop, the first framework that utilizes plausibility-guided denoising diffusion probabilistic model to learn the scale and spatial relations among multiple objects and the corresponding scene image. First, we train an unguided diffusion model to directly learn the object placement parameters in a self-supervised manner. Then, we develop a human-in-the-loop pipeline which exploits human labeling on the diffusion-generated composite images to provide the weak supervision for training a structural plausibility classifier. The classifier is further used to guide the diffusion sampling process towards generating the plausible object placement. Experimental results verify the superiority of our method for producing plausible and diverse composite images on the new Cityscapes-OP dataset and the public OPA dataset, as well as demonstrate its potential in applications such as data augmentation and multi-object placement tasks. Our dataset and code will be released.en_US
dc.description.number7
dc.description.sectionheadersImage Synthesis
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume43
dc.identifier.doi10.1111/cgf.15246
dc.identifier.issn1467-8659
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.15246
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf15246
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies → Image manipulation; Computer vision
dc.subjectComputing methodologies → Image manipulation
dc.subjectComputer vision
dc.titleDiffPop: Plausibility-Guided Object Placement Diffusion for Image Compositionen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
cgf15246.pdf
Size:
5.76 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1160_mm.pdf
Size:
600.44 KB
Format:
Adobe Portable Document Format
Collections