SOD-diffusion: Salient Object Detection via Diffusion-Based Image Generators

dc.contributor.authorZhang, Shuoen_US
dc.contributor.authorHuang, Jiamingen_US
dc.contributor.authorChen, Shizheen_US
dc.contributor.authorWu, Yanen_US
dc.contributor.authorHu, Taoen_US
dc.contributor.authorLiu, Jingen_US
dc.contributor.editorChen, Renjieen_US
dc.contributor.editorRitschel, Tobiasen_US
dc.contributor.editorWhiting, Emilyen_US
dc.date.accessioned2024-10-13T18:09:34Z
dc.date.available2024-10-13T18:09:34Z
dc.date.issued2024
dc.description.abstractSalient Object Detection (SOD) is a challenging task that aims to precisely identify and segment the salient objects. However, existing SOD methods still face challenges in making explicit predictions near the edges and often lack end-to-end training capabilities. To alleviate these problems, we propose SOD-diffusion, a novel framework that formulates salient object detection as a denoising diffusion process from noisy masks to object masks. Specifically, object masks diffuse from ground-truth masks to random distribution in latent space, and the model learns to reverse this noising process to reconstruct object masks. To enhance the denoising learning process, we design an attention feature interaction module (AFIM) and a specific fine-tuning protocol to integrate conditional semantic features from the input image with diffusion noise embedding. Extensive experiments on five widely used SOD benchmark datasets demonstrate that our proposed SOD-diffusion achieves favorable performance compared to previous well-established methods. Furthermore, leveraging the outstanding generalization capability of SOD-diffusion, we applied it to publicly available images, generating high-quality masks that serve as an additional SOD benchmark testset.en_US
dc.description.number7
dc.description.sectionheadersImage Processing and Filtering II
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume43
dc.identifier.doi10.1111/cgf.15251
dc.identifier.issn1467-8659
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.15251
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf15251
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies → Interest point and salient region detections
dc.subjectComputing methodologies → Interest point and salient region detections
dc.titleSOD-diffusion: Salient Object Detection via Diffusion-Based Image Generatorsen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
cgf15251.pdf
Size:
3.92 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1031_mm.pdf
Size:
12.34 MB
Format:
Adobe Portable Document Format
Collections