Deep Reflectance Scanning: Recovering Spatially‐varying Material Appearance from a Flash‐lit Video Sequence

dc.contributor.authorYe, Wenjieen_US
dc.contributor.authorDong, Yueen_US
dc.contributor.authorPeers, Pieteren_US
dc.contributor.authorGuo, Bainingen_US
dc.contributor.editorBenes, Bedrich and Hauser, Helwigen_US
dc.date.accessioned2021-10-08T07:38:19Z
dc.date.available2021-10-08T07:38:19Z
dc.date.issued2021
dc.description.abstractIn this paper we present a novel method for recovering high‐resolution spatially‐varying isotropic surface reflectance of a planar exemplar from a flash‐lit close‐up video sequence captured with a regular hand‐held mobile phone. We do not require careful calibration of the camera and lighting parameters, but instead compute a per‐pixel flow map using a deep neural network to align the input video frames. For each video frame, we also extract the reflectance parameters, and warp the neural reflectance features directly using the per‐pixel flow, and subsequently pool the warped features. Our method facilitates convenient hand‐held acquisition of spatially‐varying surface reflectance with commodity hardware by non‐expert users. Furthermore, our method enables aggregation of reflectance features from surface points visible in only a subset of the captured video frames, enabling the creation of high‐resolution reflectance maps that exceed the native camera resolution. We demonstrate and validate our method on a variety of synthetic and real‐world spatially‐varying materials.en_US
dc.description.number6
dc.description.sectionheadersArticles
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume40
dc.identifier.doi10.1111/cgf.14387
dc.identifier.issn1467-8659
dc.identifier.pages409-427
dc.identifier.urihttps://doi.org/10.1111/cgf.14387
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14387
dc.publisher© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltden_US
dc.subjectSVBRDF
dc.subjecthand‐held capture
dc.subjectautomatic alignment
dc.titleDeep Reflectance Scanning: Recovering Spatially‐varying Material Appearance from a Flash‐lit Video Sequenceen_US
Files
Collections