Towards Multifield Scalar Topology Based on Pareto Optimality

dc.contributor.authorHuettenberger, Larsen_US
dc.contributor.authorHeine, Christianen_US
dc.contributor.authorCarr, Hamishen_US
dc.contributor.authorScheuermann, Geriken_US
dc.contributor.authorGarth, Christophen_US
dc.contributor.editorB. Preim, P. Rheingans, and H. Theiselen_US
dc.date.accessioned2015-02-28T15:31:10Z
dc.date.available2015-02-28T15:31:10Z
dc.date.issued2013en_US
dc.description.abstractHow can the notion of topological structures for single scalar fields be extended to multifields? In this paper we propose a definition for such structures using the concepts of Pareto optimality and Pareto dominance. Given a set of piecewise-linear, scalar functions over a common simplical complex of any dimension, our method finds regions of ''consensus'' among single fields' critical points and their connectivity relations. We show that our concepts are useful to data analysis on real-world examples originating from fluid-flow simulations; in two cases where the consensus of multiple scalar vortex predictors is of interest and in another case where one predictor is studied under different simulation parameters. We also compare the properties of our approach with current alternatives.en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.identifier.doi10.1111/cgf.12121en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/cgf.12121en_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectGeometric algorithmsen_US
dc.subjectlanguagesen_US
dc.subjectand systemsen_US
dc.titleTowards Multifield Scalar Topology Based on Pareto Optimalityen_US
Files