38-Issue 3
Permanent URI for this collection
Browse
Browsing 38-Issue 3 by Issue Date
Now showing 1 - 20 of 59
Results Per Page
Sort Options
Item Visual-Interactive Preprocessing of Multivariate Time Series Data(The Eurographics Association and John Wiley & Sons Ltd., 2019) Bernard, Jürgen; Hutter, Marco; Reinemuth, Heiko; Pfeifer, Hendrik; Bors, Christian; Kohlhammer, Jörn; Gleicher, Michael and Viola, Ivan and Leitte, HeikePre-processing is a prerequisite to conduct effective and efficient downstream data analysis. Pre-processing pipelines often require multiple routines to address data quality challenges and to bring the data into a usable form. For both the construction and the refinement of pre-processing pipelines, human-in-the-loop approaches are highly beneficial. This particularly applies to multivariate time series, a complex data type with multiple values developing over time. Due to the high specificity of this domain, it has not been subject to in-depth research in visual analytics. We present a visual-interactive approach for preprocessing multivariate time series data with the following aspects. Our approach supports analysts to carry out six core analysis tasks related to pre-processing of multivariate time series. To support these tasks, we identify requirements to baseline toolkits that may help practitioners in their choice. We characterize the space of visualization designs for uncertainty-aware pre-processing and justify our decisions. Two usage scenarios demonstrate applicability of our approach, design choices, and uncertainty visualizations for the six analysis tasks. This work is one step towards strengthening the visual analytics support for data pre-processing in general and for uncertainty-aware pre-processing of multivariate time series in particular.Item Visual Analysis of Charge Flow Networks for Complex Morphologies(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kottravel, Sathish; Falk, Martin; Bin Masood, Talha; linares, mathieu; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn the field of organic electronics, understanding complex material morphologies and their role in efficient charge transport in solar cells is extremely important. Related processes are studied using the Ising model and Kinetic Monte Carlo simulations resulting in large ensembles of stochastic trajectories. Naive visualization of these trajectories, individually or as a whole, does not lead to new knowledge discovery through exploration. In this paper, we present novel visualization and exploration methods to analyze this complex dynamic data, which provide succinct and meaningful abstractions leading to scientific insights. We propose a morphology abstraction yielding a network composed of material pockets and the interfaces, which serves as backbone for the visualization of the charge diffusion. The trajectory network is created using a novel way of implicitly attracting the trajectories to the skeleton of the morphology relying on a relaxation process. Each individual trajectory is then represented as a connected sequence of nodes in the skeleton. The final network summarizes all of these sequences in a single aggregated network. We apply our method to three different morphologies and demonstrate its suitability for exploring this kind of data.Item A Geometric Optimization Approach for the Detection and Segmentation of Multiple Aneurysms(The Eurographics Association and John Wiley & Sons Ltd., 2019) Lawonn, Kai; Meuschke, Monique; Wickenhöfer, Ralph; Preim, Bernhard; Hildebrandt, Klaus; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe present a method for detecting and segmenting aneurysms in blood vessels that facilitates the assessment of risks associated with the aneurysms. The detection and analysis of aneurysms is important for medical diagnosis as aneurysms bear the risk of rupture with fatal consequences for the patient. For risk assessment and treatment planning, morphological descriptors, such as the height and width of the aneurysm, are used. Our system enables the fast detection, segmentation and analysis of single and multiple aneurysms. The method proceeds in two stages plus an optional third stage in which the user interacts with the system. First, a set of aneurysm candidate regions is created by segmenting regions of the vessels. Second, the aneurysms are detected by a classification of the candidates. The third stage allows users to adjust and correct the result of the previous stages using a brushing interface. When the segmentation of the aneurysm is complete, the corresponding ostium curves and morphological descriptors are computed and a report including the results of the analysis and renderings of the aneurysms is generated. The novelty of our approach lies in combining an analytic characterization of aneurysms and vessels to generate a list of candidate regions with a classifier trained on data to identify the aneurysms in the candidate list. The candidate generation is modeled as a global combinatorial optimization problem that is based on a local geometric characterization of aneurysms and vessels and can be efficiently solved using a graph cut algorithm. For the aneurysm classification scheme, we identified four suitable features and modeled appropriate training data. An important aspect of our approach is that the resulting system is fast enough to allow for user interaction with the global optimization by specifying additional constraints via a brushing interface.Item Robust Extraction and Simplification of 2D Symmetric Tensor Field Topology(The Eurographics Association and John Wiley & Sons Ltd., 2019) Jankowai, Jochen; Wang, Bei; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn this work, we propose a controlled simplification strategy for degenerated points in symmetric 2D tensor fields that is based on the topological notion of robustness. Robustness measures the structural stability of the degenerate points with respect to variation in the underlying field. We consider an entire pipeline for generating a hierarchical set of degenerate points based on their robustness values. Such a pipeline includes the following steps: the stable extraction and classification of degenerate points using an edge labeling algorithm, the computation and assignment of robustness values to the degenerate points, and the construction of a simplification hierarchy. We also discuss the challenges that arise from the discretization and interpolation of real world data.Item Evaluating Image Quality Measures to Assess the Impact of Lossy Data Compression Applied to Climate Simulation Data(The Eurographics Association and John Wiley & Sons Ltd., 2019) Baker, Allison; Hammerling, Dorit; Turton, Terece; Gleicher, Michael and Viola, Ivan and Leitte, HeikeApplying lossy data compression to climate model output is an attractive means of reducing the enormous volumes of data generated by climate models. However, because lossy data compression does not exactly preserve the original data, its application to scientific data must be done judiciously. To this end, a collection of measures is being developed to evaluate various aspects of lossy compression quality on climate model output. Given the importance of data visualization to climate scientists interacting with model output, any suite of measures must include a means of assessing whether images generated from the compressed model data are noticeably different from images based on the original model data. Therefore, in this work we conduct a forcedchoice visual evaluation study with climate model data that surveyed more than one hundred participants with domain relevant expertise. In addition to the images created from unaltered climate model data, study images are generated from model data that is subjected to two different types of lossy compression approaches and multiple levels (amounts) of compression. Study participants indicate whether a visual difference can be seen, with respect to the reference image, due to lossy compression effects. We assess the relationship between the perceptual scores from the user study to a number of common (full reference) image quality assessment (IQA) measures, and use statistical models to suggest appropriate measures and thresholds for evaluating lossily compressed climate data. We find the structural similarity index (SSIM) to perform the best, and our findings indicate that the threshold required for climate model data is much higher than previous findings in the literature.Item Analysis of Long Molecular Dynamics Simulations Using Interactive Focus+Context Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2019) Byška, Jan; Trautner, Thomas; Marques, Sérgio M.; Damborský, Jiří; Kozlíková, Barbora; Waldner, Manuela; Gleicher, Michael and Viola, Ivan and Leitte, HeikeAnalyzing molecular dynamics (MD) simulations is a key aspect to understand protein dynamics and function. With increasing computational power, it is now possible to generate very long and complex simulations, which are cumbersome to explore using traditional 3D animations of protein movements. Guided by requirements derived from multiple focus groups with protein engineering experts, we designed and developed a novel interactive visual analysis approach for long and crowded MD simulations. In this approach, we link a dynamic 3D focus+context visualization with a 2D chart of time series data to guide the detection and navigation towards important spatio-temporal events. The 3D visualization renders elements of interest in more detail and increases the temporal resolution dependent on the time series data or the spatial region of interest. In case studies with different MD simulation data sets and research questions, we found that the proposed visual analysis approach facilitates exploratory analysis to generate, confirm, or reject hypotheses about causalities. Finally, we derived design guidelines for interactive visual analysis of complex MD simulation data.Item Topic Tomographies (TopTom): a Visual Approach to Distill Information From Media Streams(The Eurographics Association and John Wiley & Sons Ltd., 2019) Gobbo, Beatrice; Balsamo, Duilio; Mauri, Michele; Bajardi, Paolo; Panisson, André; CIUCCARELLI, PAOLO; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn this paper we present TopTom, a digital platform whose goal is to provide analytical and visual solutions for the exploration of a dynamic corpus of user-generated messages and media articles, with the aim of i) distilling the information from thousands of documents in a low-dimensional space of explainable topics, ii) cluster them in a hierarchical fashion while allowing to drill down to details and stories as constituents of the topics, iii) spotting trends and anomalies. TopTom implements a batch processing pipeline able to run both in near-real time with time stamped data from streaming sources and on historical data with a temporal dimension in a cold start mode. The resulting output unfolds along three main axes: time, volume and semantic similarity (i.e. topic hierarchical aggregation). To allow the browsing of data in a multiscale fashion and the identification of anomalous behaviors, three visual metaphors were adopted from biological and medical fields to design visualizations, i.e. the flowing of particles in a coherent stream, tomographic cross sectioning and contrast-like analysis of biological tissues. The platform interface is composed by three main visualizations with coherent and smooth navigation interactions: calendar view, flow view, and temporal cut view. The integration of these three visual models with the multiscale analytic pipeline proposes a novel system for the identification and exploration of topics from unstructured texts. We evaluated the system using a collection of documents about the emerging opioid epidemics in the United States.Item A User-based Visual Analytics Workflow for Exploratory Model Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2019) Cashman, Dylan; Humayoun, Shah Rukh; Heimerl, Florian; Park, Kendall; Das, Subhajit; Thompson, John; Saket, Bahador; Mosca, Abigail; Stasko, John; Endert, Alex; Gleicher, Michael; Chang, Remco; Gleicher, Michael and Viola, Ivan and Leitte, HeikeMany visual analytics systems allow users to interact with machine learning models towards the goals of data exploration and insight generation on a given dataset. However, in some situations, insights may be less important than the production of an accurate predictive model for future use. In that case, users are more interested in generating of diverse and robust predictive models, verifying their performance on holdout data, and selecting the most suitable model for their usage scenario. In this paper, we consider the concept of Exploratory Model Analysis (EMA), which is defined as the process of discovering and selecting relevant models that can be used to make predictions on a data source. We delineate the differences between EMA and the well-known term exploratory data analysis in terms of the desired outcome of the analytic process: insights into the data or a set of deployable models. The contributions of this work are a visual analytics system workflow for EMA, a user study, and two use cases validating the effectiveness of the workflow. We found that our system workflow enabled users to generate complex models, to assess them for various qualities, and to select the most relevant model for their task.Item SurgeryCuts: Embedding Additional Information in Maps without Occluding Features(The Eurographics Association and John Wiley & Sons Ltd., 2019) Angelini, Marco; Buchmüller, Juri; Keim, Daniel A.; Meschenmoser, Philipp; Santucci, Giuseppe; Gleicher, Michael and Viola, Ivan and Leitte, HeikeVisualizing contextual information to a map often comes at the expense of overplotting issues. Especially for use cases with relevant map features in the immediate vicinity of an information to add, occlusion of the relevant map context should be avoided. We present SurgeryCuts, a map manipulation technique for the creation of additional canvas area for contextual visualizations on maps. SurgeryCuts is occlusion-free and does not shift, zoom or alter the map viewport. Instead, relevant parts of the map can be cut apart. The affected area is controlledly distorted using a parameterizable warping function fading out the map distortion depending on the distance to the cut. We define extended metrics for our approach and compare to related approaches. As well, we demonstrate the applicability of our approach at the example of tangible use cases and a comparative user study.Item Characterizing Exploratory Visual Analysis: A Literature Review and Evaluation of Analytic Provenance in Tableau(The Eurographics Association and John Wiley & Sons Ltd., 2019) Battle, Leilani; Heer, Jeffrey; Gleicher, Michael and Viola, Ivan and Leitte, HeikeSupporting exploratory visual analysis (EVA) is a central goal of visualization research, and yet our understanding of the process is arguably vague and piecemeal. We contribute a consistent definition of EVA through review of the relevant literature, and an empirical evaluation of existing assumptions regarding how analysts perform EVA using Tableau, a popular visual analysis tool. We present the results of a study where 27 Tableau users answered various analysis questions across 3 datasets. We measure task performance, identify recurring patterns across participants' analyses, and assess variance from task specificity and dataset. We find striking differences between existing assumptions and the collected data. Participants successfully completed a variety of tasks, with over 80% accuracy across focused tasks with measurably correct answers. The observed cadence of analyses is surprisingly slow compared to popular assumptions from the database community. We find significant overlap in analyses across participants, showing that EVA behaviors can be predictable. Furthermore, we find few structural differences between behavior graphs for open-ended and more focused exploration tasks.Item VIAN: A Visual Annotation Tool for Film Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2019) Halter, Gaudenz; Ballester-Ripoll, Rafael; Flueckiger, Barbara; Pajarola, Renato; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWhile color plays a fundamental role in film design and production, existing solutions for film analysis in the digital humanities address perceptual and spatial color information only tangentially. We introduce VIAN, a visual film annotation system centered on the semantic aspects of film color analysis. The tool enables expert-assessed labeling, curation, visualization and classification of color features based on their perceived context and aesthetic quality. It is the first of its kind that incorporates foreground-background information made possible by modern deep learning segmentation methods. The proposed tool seamlessly integrates a multimedia data management system, so that films can undergo a full color-oriented analysis pipeline.Item Kyrix: Interactive Pan/Zoom Visualizations at Scale(The Eurographics Association and John Wiley & Sons Ltd., 2019) Tao, Wenbo; Liu, Xiaoyu; Wang, Yedi; Battle, Leilani; Demiralp, Çagatay; Chang, Remco; Stonebraker, Michael; Gleicher, Michael and Viola, Ivan and Leitte, HeikePan and zoom are basic yet powerful interaction techniques for exploring large datasets. However, existing zoomable UI toolkits such as Pad++ and ZVTM do not provide the backend database support and data-driven primitives that are necessary for creating large-scale visualizations. This limitation in existing general-purpose toolkits has led to many purpose-built solutions (e.g. Google Maps and ForeCache) that address the issue of scalability but cannot be easily extended to support visualizations beyond their intended data types and usage scenarios. In this paper, we introduce Kyrix to ease the process of creating general and large-scale web-based pan/zoom visualizations. Kyrix is an integrated system that provides the developer with a concise and expressive declarative language along with a backend support for performance optimization of large-scale data. To evaluate the scalability of Kyrix, we conducted a set of benchmarked experiments and show that Kyrix can support high interactivity (with an average latency of 100 ms or below) on pan/zoom visualizations of 100 million data points. We further demonstrate the accessibility of Kyrix through an observational study with 8 developers. Results indicate that developers can quickly learn Kyrix's underlying declarative model to create scalable pan/zoom visualizations. Finally, we provide a gallery of visualizations and show that Kyrix is expressive and flexible in that it can support the developer in creating a wide range of customized visualizations across different application domains and data types.Item Linking and Layout: Exploring the Integration of Text and Visualization in Storytelling(The Eurographics Association and John Wiley & Sons Ltd., 2019) Zhi, Qiyu; Ottley, Alvitta; Metoyer, Ronald; Gleicher, Michael and Viola, Ivan and Leitte, HeikeModern web technologies are enabling authors to create various forms of text visualization integration for storytelling. This integration may shape the stories' flow and thereby affect the reading experience. In this paper, we seek to understand two text visualization integration forms: (i) different text and visualization spatial arrangements (layout), namely, vertical and slideshow; and (ii) interactive linking of text and visualization (linking). Here, linking refers to a bidirectional interaction mode that explicitly highlights the explanatory visualization element when selecting narrative text and vice versa. Through a crowdsourced study with 180 participants, we measured the effect of layout and linking on the degree to which users engage with the story (user engagement), their understanding of the story content (comprehension), and their ability to recall the story information (recall). We found that participants performed significantly better in comprehension tasks with the slideshow layout. Participant recall was better with the slideshow layout under conditions with linking versus no linking. We also found that linking significantly increased user engagement. Additionally, linking and the slideshow layout were preferred by the participants. We also explored user reading behaviors with different conditions.Item EuroVis 2019 CGF 38-3: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2019) Gleicher, Michael; Viola, Ivan; Leitte, Heike; Gleicher, Michael and Viola, Ivan and Leitte, HeikeItem Follow The Clicks: Learning and Anticipating Mouse Interactions During Exploratory Data Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2019) Ottley, Alvitta; Garnett, Roman; Wan, Ran; Gleicher, Michael and Viola, Ivan and Leitte, HeikeThe goal of visual analytics is to create a symbiosis between human and computer by leveraging their unique strengths. While this model has demonstrated immense success, we are yet to realize the full potential of such a human-computer partnership. In a perfect collaborative mixed-initiative system, the computer must possess skills for learning and anticipating the users' needs. Addressing this gap, we propose a framework for inferring attention from passive observations of the user's click, thereby allowing accurate predictions of future events. We demonstrate this technique with a crime map and found that users' clicks can appear in our prediction set 92% - 97% of the time. Further analysis shows that we can achieve high prediction accuracy typically after three clicks. Altogether, we show that passive observations of interaction data can reveal valuable information that will allow the system to learn and anticipate future events.Item Segmentifier: Interactive Refinement of Clickstream Data(The Eurographics Association and John Wiley & Sons Ltd., 2019) Dextras-Romagnino, Kimberly; Munzner, Tamara; Gleicher, Michael and Viola, Ivan and Leitte, HeikeClickstream data has the potential to provide insights into e-commerce consumer behavior, but previous techniques fall short of handling the scale and complexity of real-world datasets because they require relatively clean and small input. We present Segmentifier, a novel visual analytics interface that supports an iterative process of refining collections of action sequences into meaningful segments. We present task and data abstractions for clickstream data analysis, leading to a high-level model built around an iterative view-refine-record loop with outcomes of conclude with an answer, export segment for further analysis in downstream tools, or abandon the question for a more fruitful analysis path. Segmentifier supports fast and fluid refinement of segments through tightly coupled visual encoding and interaction with a rich set of views that show evocative derived attributes for segments, sequences, and actions in addition to underlying raw sequences. These views support fast and fluid refinement of segments through filtering and partitioning attribute ranges. Interactive visual queries on custom action sequences are aggregated according to a three-level hierarchy. Segmentifier features a detailed glyph-based visual history of the automatically recorded analysis process showing the provenance of each segment as an analysis path of attribute constraints. We demonstrate the effectiveness of our approach through a usage scenario with real-world data and a case study documenting the insights gained by a corporate e-commerce analyst.Item Analysis of Decadal Climate Predictions with User-guided Hierarchical Ensemble Clustering(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kappe, Christopher; Böttinger, Michael; Leitte, Heike; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn order to gain probabilistic results, ensemble simulation techniques are increasingly applied in the weather and climate sciences (as well as in various other scientific disciplines). In many cases, however, only mean results or other abstracted quantities such as percentiles are used for further analyses and dissemination of the data. In this work, we aim at a more detailed visualization of the temporal development of the whole ensemble that takes the variability of all single members into account. We propose a visual analytics tool that allows an effective analysis process based on a hierarchical clustering of the time-dependent scalar fields. The system includes a flow chart that shows the ensemble members' cluster affiliation over time, reflecting the whole cluster hierarchy. The latter one can be dynamically explored using a visualization derived from a dendrogram. As an aid in linking the different views, we have developed an adaptive coloring scheme that takes into account cluster similarity and the containment relationships. Finally, standard visualizations of the involved field data (cluster means, ground truth data, etc.) are also incorporated. We include results of our work on real-world datasets to showcase the utility of our approach.Item Robust Reference Frame Extraction from Unsteady 2D Vector Fields with Convolutional Neural Networks(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kim, Byungsoo; Günther, Tobias; Gleicher, Michael and Viola, Ivan and Leitte, HeikeRobust feature extraction is an integral part of scientific visualization. In unsteady vector field analysis, researchers recently directed their attention towards the computation of near-steady reference frames for vortex extraction, which is a numerically challenging endeavor. In this paper, we utilize a convolutional neural network to combine two steps of the visualization pipeline in an end-to-end manner: the filtering and the feature extraction. We use neural networks for the extraction of a steady reference frame for a given unsteady 2D vector field. By conditioning the neural network to noisy inputs and resampling artifacts, we obtain numerically stabler results than existing optimization-based approaches. Supervised deep learning typically requires a large amount of training data. Thus, our second contribution is the creation of a vector field benchmark data set, which is generally useful for any local deep learning-based feature extraction. Based on Vatistas velocity profile, we formulate a parametric vector field mixture model that we parameterize based on numerically-computed example vector fields in near-steady reference frames. Given the parametric model, we can efficiently synthesize thousands of vector fields that serve as input to our deep learning architecture. The proposed network is evaluated on an unseen numerical fluid flow simulation.Item The Dependent Vectors Operator(The Eurographics Association and John Wiley & Sons Ltd., 2019) Hofmann, Lutz; Sadlo, Filip; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn this paper, we generalize the parallel vectors operator due to Peikert and Roth to arbitrary dimension, i.e., to four-dimensional fields and beyond. Whereas the original operator tested for parallelism of two (derived) 2D or 3D vector fields, we reformulate the concept in terms of linear dependency of sets of vector fields, and propose a generic technique to extract and filter the solution manifolds.We exemplify our approach for vortex cores, bifurcations, and ridges as well as valleys in higher dimensions.Item Toward Understanding Representation Methods in Visualization Recommendations through Scatterplot Construction Tasks(The Eurographics Association and John Wiley & Sons Ltd., 2019) L'Yi, Sehi; Chang, Youli; Shin, DongHwa; Seo, Jinwook; Gleicher, Michael and Viola, Ivan and Leitte, HeikeMost visualization recommendation systems predominantly rely on graphical previews to describe alternative visual encodings. However, since InfoVis novices are not familiar with visual representations (e.g., interpretation barriers [GTS10]), novices might have difficulty understanding and choosing recommended visual encodings. As an initial step toward understanding effective representation methods for visualization recommendations, we investigate the effectiveness of three representation methods (i.e., previews, animated transitions, and textual descriptions) under scatterplot construction tasks. Our results show how different representations individually and cooperatively help users understand and choose recommended visualizations, for example, by supporting their expect-and-confirm process. Based on our study results, we discuss design implications for visualization recommendation interfaces.
- «
- 1 (current)
- 2
- 3
- »