Volume 30 (2011)
Permanent URI for this community
Browse
Browsing Volume 30 (2011) by Issue Date
Now showing 1 - 20 of 236
Results Per Page
Sort Options
Item State‐of‐the‐Art Report on Temporal Coherence for Stylized Animations(The Eurographics Association and Blackwell Publishing Ltd., 2011) Bénard, Pierre; Bousseau, Adrien; Thollot, Joëlle; Eduard Groeller and Holly RushmeierNon‐photorealistic rendering (NPR) algorithms allow the creation of images in a variety of styles, ranging from line drawing and pen‐and‐ink to oil painting and watercolour. These algorithms provide greater flexibility, control and automation over traditional drawing and painting. Despite significant progress over the past 15 years, the application of NPR to the generation of stylized animations remains an active area of research. The main challenge of computer‐generated stylized animations is to reproduce the look of traditional drawings and paintings while minimizing distracting flickering and sliding artefacts present in hand‐drawn animations. These goals are inherently conflicting and any attempt to address the temporal coherence of stylized animations is a trade‐off. This state‐of‐the‐art report is motivated by the growing number of methods proposed in recent years and the need for a comprehensive analysis of the trade‐offs they propose. We formalize the problem of temporal coherence in terms of goals and compare existing methods accordingly. We propose an analysis for both line and region stylization methods and discuss initial steps towards their perceptual evaluation. The goal of our report is to help uninformed readers to choose the method that best suits their needs, as well as motivate further research to address the limitations of existing methods.Item Efficient Parallel Vectors Feature Extraction from Higher-Order Data(The Eurographics Association and Blackwell Publishing Ltd., 2011) Pagot, Christian; Osmari, D.; Sadlo, F.; Weiskopf, Daniel; Ertl, Thomas; Comba, J.; H. Hauser, H. Pfister, and J. J. van WijkThe parallel vectors (PV) operator is a feature extraction approach for defining line-type features such as creases (ridges and valleys) in scalar fields, as well as separation, attachment, and vortex core lines in vector fields. In this work, we extend PV feature extraction to higher-order data represented by piecewise analytical functions defined over grid cells. The extraction uses PV in two distinct stages. First, seed points on the feature lines are placed by evaluating the inclusion form of the PV criterion with reduced affine arithmetic. Second, a feature flow field is derived from the higher-order PV expression where the features can be extracted as streamlines starting at the seeds. Our approach allows for guaranteed bounds regarding accuracy with respect to existence, position, and topology of the features obtained. The method is suitable for parallel implementation and we present results obtained with our GPU-based prototype. We apply our method to higher-order data obtained from discontinuous Galerkin fluid simulations.Item Comprehensive Facial Performance Capture(The Eurographics Association and Blackwell Publishing Ltd., 2011) Fyffe, Graham; Hawkins, Tim; Watts, Chris; Ma, Wan-Chun; Debevec, Paul; M. Chen and O. DeussenWe present a system for recording a live dynamic facial performance, capturing highly detailed geometry and spatially varying diffuse and specular reflectance information for each frame of the performance. The result is a reproduction of the performance that can be rendered from novel viewpoints and novel lighting conditions, achieving photorealistic integration into any virtual environment. Dynamic performances are captured directly, without the need for any template geometry or static geometry scans, and processing is completely automatic, requiring no human input or guidance. Our key contributions are a heuristic for estimating facial reflectance information from gradient illumination photographs, and a geometry optimization framework that maximizes a principled likelihood function combining multi-view stereo correspondence and photometric stereo, using multiresolution belief propagation. The output of our system is a sequence of geometries and reflectance maps, suitable for rendering in off-the-shelf software. We show results from our system rendered under novel viewpoints and lighting conditions, and validate our results by demonstrating a close match to ground truth photographsItem Comparison of Multiple Weighted Hierarchies: Visual Analytics for Microbe Community Profiling(The Eurographics Association and Blackwell Publishing Ltd., 2011) Dinkla, Kasper; Westenberg, M. A.; Timmerman, H. M.; Hijum, S.A.F.T. van; Wijk, J. J. van; H. Hauser, H. Pfister, and J. J. van WijkWe propose visual analytics techniques to support concurrent comparison of hundreds of cumulatively weighted instances of a single hierarchy. This includes a node-link representation of the hierarchy where nodes depict the weights of all instances with high-density heat maps that are grouped and aligned to ease cross-referencing. Hierarchy exploration is facilitated by smoothly animated expansion and collapse of its branches. Detailed infor- mation about hierarchy structure, weights, and meta-data is provided by secondary linked visualizations. These techniques have been implemented in a prototype tool, in which the computational analysis concerns have been strictly separated from the visualization concerns. The analysis algorithms are extensible via a script engine. We discuss the effectiveness of our techniques for the visual analytic process of microbe community profiling experts.Item Implicit Brushes for Stylized Line-based Rendering(The Eurographics Association and Blackwell Publishing Ltd., 2011) Vergne, Romain; Vanderhaeghe, David; Chen, Jiazhou; Barla, Pascal; Granier, Xavier; Schlick, Christophe; M. Chen and O. DeussenWe introduce a new technique called Implicit Brushes to render animated 3D scenes with stylized lines in realtime with temporal coherence. An Implicit Brush is defined at a given pixel by the convolution of a brush footprint along a feature skeleton; the skeleton itself is obtained by locating surface features in the pixel neighborhood. Features are identified via image-space fitting techniques that not only extract their location, but also their profile, which permits to distinguish between sharp and smooth features. Profile parameters are then mapped to stylistic parameters such as brush orientation, size or opacity to give rise to a wide range of line-based styles.Item WaveMap: Interactively Discovering Features From Protein Flexibility Matrices Using Wavelet-based Visual Analytics(The Eurographics Association and Blackwell Publishing Ltd., 2011) Barlowe, Scott; Liu, Yujie; Yang, Jing; Livesay, Dennis R.; Jacobs, Donald J.; Mottonen, James; Verma, Deeptak; H. Hauser, H. Pfister, and J. J. van WijkThe knowledge gained from biology datasets can streamline and speed-up pharmaceutical development. However, computational models generate so much information regarding protein behavior that large-scale analysis by traditional methods is almost impossible. The volume of data produced makes the transition from data to knowledge difficult and hinders biomedical advances. In this work, we present a novel visual analytics approach named WaveMap for exploring data generated by a protein flexibility model. WaveMap integrates wavelet analysis, visualizations, and interactions to facilitate the browsing, feature identification, and comparison of protein attributes represented by two-dimensional plots. We have implemented a fully working prototype of WaveMap and illustrate its usefulness through expert evaluation and an example scenario.Item Improved Stochastic Progressive Photon Mapping with Metropolis Sampling(The Eurographics Association and Blackwell Publishing Ltd., 2011) Chen, Jiating; Wang, Bin; Yong, Jun-Hai; Ravi Ramamoorthi and Erik ReinhardThis paper presents an improvement to the stochastic progressive photon mapping (SPPM), a method for robustly simulating complex global illumination with distributed ray tracing effects. Normally, similar to photon mapping and other particle tracing algorithms, SPPM would become inefficient when the photons are poorly distributed. An inordinate amount of photons are required to reduce the error caused by noise and bias to acceptable levels. In order to optimize the distribution of photons, we propose an extension of SPPM with a Metropolis-Hastings algorithm, effectively exploiting local coherence among the light paths that contribute to the rendered image. A well-designed scalar contribution function is introduced as our Metropolis sampling strategy, targeting at specific parts of image areas with large error to improve the efficiency of the radiance estimator. Experimental results demonstrate that the new Metropolis sampling based approach maintains the robustness of the standard SPPM method, while significantly improving the rendering efficiency for a wide range of scenes with complex lighting.Item Perceptual Evaluation of Ghosted View Techniques for the Exploration of Vascular Structures and Embedded Flow(The Eurographics Association and Blackwell Publishing Ltd., 2011) Baer, Alexandra; Gasteiger, Rocco; Cunningham, Douglas; Preim, Bernhard; H. Hauser, H. Pfister, and J. J. van WijkThis paper presents three controlled perceptual studies investigating the visualization of the cerebral aneurysm anatomy with embedded flow visualization. We evaluate and compare the common semitransparent visualization technique with a ghosted view and a ghosted view with depth enhancement technique. We analyze the techniques' ability to facilitate and support the shape and spatial representation of the aneurysm models as well as evaluating the smart visibility characteristics. The techniques are evaluated with respect to the participants accuracy, response time and their personal preferences. We used as stimuli 3D aneurysm models of five clinical datasets. There was overwhelming preference for the two ghosted view techniques over the semitransparent technique. Since smart visibility techniques are rarely evaluated, this paper may serve as orientation for further studies.Item Perception of Visual Artifacts in Image-Based Rendering of Façades(The Eurographics Association and Blackwell Publishing Ltd., 2011) Vangorp, Peter; Chaurasia, Gaurav; Laffont, Pierre-Yves; Fleming, Roland W.; Drettakis, George; Ravi Ramamoorthi and Erik ReinhardImage-based rendering (IBR) techniques allow users to create interactive 3D visualizations of scenes by taking a few snapshots. However, despite substantial progress in the field, the main barrier to better quality and more efficient IBR visualizations are several types of common, visually objectionable artifacts. These occur when scene geometry is approximate or viewpoints differ from the original shots, leading to parallax distortions, blurring, ghosting and popping errors that detract from the appearance of the scene. We argue that a better understanding of the causes and perceptual impact of these artifacts is the key to improving IBR methods. In this study we present a series of psychophysical experiments in which we systematically map out the perception of artifacts in IBR visualizations of façades as a function of the most common causes. We separate artifacts into different classes and measure how they impact visual appearance as a function of the number of images available, the geometry of the scene and the viewpoint. The results reveal a number of counter-intuitive effects in the perception of artifacts. We summarize our results in terms of practical guidelines for improving existing and future IBR techniques.Item Direct Ray Tracing of Phong Tessellation(The Eurographics Association and Blackwell Publishing Ltd., 2011) Ogaki, Shinji; Tokuyoshi, Yusuke; Ravi Ramamoorthi and Erik ReinhardThere are two major ways of calculating ray and parametric surface intersections in rendering. The first is through the use of tessellated triangles, and the second is to use parametric surfaces together with numerical methods such as Newton's method. Both methods are computationally expensive and complicated to implement. In this paper, we focus on Phong Tessellation and introduce a simple direct ray tracing method for Phong Tessellation. Our method enables rendering smooth surfaces in a computationally inexpensive yet robust way.Item Walking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations(The Eurographics Association and Blackwell Publishing Ltd., 2011) Campen, Marcel; Kobbelt, Leif; M. Chen and O. DeussenEfficient methods to compute intrinsic distances and geodesic paths have been presented for various types of surface representations, most importantly polygon meshes. These meshes are usually assumed to be well-structured and manifold. In practice, however, they often contain defects like holes, gaps, degeneracies, non-manifold configurations - or they might even be just a soup of polygons. The task of repairing these defects is computationally complex and in many cases exhibits various ambiguities demanding tedious manual efforts. We present a computational framework that enables the computation of meaningful approximate intrinsic distances and geodesic paths on raw meshes in a way which is tolerant to such defects. Holes and gaps are bridged up to a user-specified tolerance threshold such that distances can be computed plausibly even across multiple connected components of inconsistent meshes. Further, we show ways to locally parameterize a surface based on geodesic distance fields, easily facilitating the application of textures and decals on raw meshes. We do all this without explicitly repairing the input, thereby avoiding the costly additional efforts. In order to enable broad applicability we provide details on two implementation variants, one optimized for performance, the other optimized for memory efficiency. Using the presented framework many applications can readily be extended to deal with imperfect meshes. Since we abstract from the input applicability is not even limited to meshes, other representations can be handled as well.Item Visualizing the Evolution of Community Structures in Dynamic Social Networks(The Eurographics Association and Blackwell Publishing Ltd., 2011) Reda, Khairi; Tantipathananandh, Chayant; Johnson, Andrew; Leigh, Jason; Berger-Wolf, Tanya; H. Hauser, H. Pfister, and J. J. van WijkSocial network analysis is the study of patterns of interaction between social entities. The field is attracting increasing attention from diverse disciplines including sociology, epidemiology, and behavioral ecology. An important sociological phenomenon that draws the attention of analysts is the emergence of communities, which tend to form, evolve, and dissolve gradually over a period of time. Understanding this evolution is crucial to sociologists and domain scientists, and often leads to a better appreciation of the social system under study. Therefore, it is imperative that social network visualization tools support this task. While graph-based representations are well suited for investigating structural properties of networks at a single point in time, they appear to be significantly less useful when used to analyze gradual structural changes over a period of time. In this paper, we present an interactive visualization methodology for dynamic social networks. Our technique focuses on revealing the community structure implied by the evolving interaction patterns between individuals. We apply our visualization to analyze the community structure in the US House of Representatives. We also report on a user study conducted with the participation of behavioral ecologists working with social network datasets that depict interactions between wild animals. Findings from the user study confirm that the visualization was helpful in providing answers to sociological questions as well as eliciting new observations on the social organization of the population under study.Item Learning Line Features in 3D Geometry(The Eurographics Association and Blackwell Publishing Ltd., 2011) Sunkel, Martin; Jansen, Silke; Wand, Michael; Eisemann, Elmar; Seidel, Hans-Peter; M. Chen and O. DeussenFeature detection in geometric datasets is a fundamental tool for solving shape matching problems such as partial symmetry detection. Traditional techniques usually employ a priori models such as crease lines that are unspecific to the actual application. Our paper examines the idea of learning geometric features. We introduce a formal model for a class of linear feature constellations based on a Markov chain model and propose a novel, efficient algorithm for detecting a large number of features simultaneously. After a short user-guided training stage, in which one or a few example lines are sketched directly onto the input data, our algorithm automatically finds all pieces of geometry similar to the marked areas. In particular, the algorithm is able recognize larger classes of semantically similar but geometrically varying features, which is very difficult using unsupervised techniques. In a number of experiments, we apply our technique to point cloud data from 3D scanners. The algorithm is able to detect features with very low rates of false positives and negatives and to recognize broader classes of similar geometry (such as "windows" in a building scan) even from few training examples, thereby significantly improving over previous unsupervised techniques.Item Dynamic Display of BRDFs(The Eurographics Association and Blackwell Publishing Ltd., 2011) Hullin, Matthias B.; Lensch, Hendrik P. A.; Raskar, Ramesh; Seidel, Hans-Peter; Ihrke, Ivo; M. Chen and O. DeussenThis paper deals with the challenge of physically displaying reflectance, i.e., the appearance of a surface and its variation with the observer position and the illuminating environment. This is commonly described by the bidirectional reflectance distribution function (BRDF). We provide a catalogue of criteria for the display of BRDFs, and sketch a few orthogonal approaches to solving the problem in an optically passive way. Our specific implementation is based on a liquid surface, on which we excite waves in order to achieve a varying degree of anisotropic roughness. The resulting probability density function of the surface normal is shown to follow a Gaussian distribution similar to most established BRDF models.Item Component-wise Controllers for Structure-Preserving Shape Manipulation(The Eurographics Association and Blackwell Publishing Ltd., 2011) Zheng, Youyi; Fu, Hongbo; Cohen-Or, Daniel; Au, Oscar Kin-Chung; Tai, Chiew-Lan; M. Chen and O. DeussenRecent shape editing techniques, especially for man-made models, have gradually shifted focus from maintaining local, low-level geometric features to preserving structural, high-level characteristics like symmetry and parallelism. Such new editing goals typically require a pre-processing shape analysis step to enable subsequent shape editing. Observing that most editing of shapes involves manipulating their constituent components, we introduce component-wise controllers that are adapted to the component characteristics inferred from shape analysis. The controllers capture the natural degrees of freedom of individual components and thus provide an intuitive user interface for editing. A typical model usually results in a moderate number of controllers, allowing easy establishment of semantic relations among them by automatic shape analysis supplemented with user interaction. We propose a component-wise propagation algorithm to automatically preserve the established inter-relations while maintaining the defining characteristics of individual controllers and respecting the user-specified modeling constraints. We extend these ideas to a hierarchical setup, allowing the user to adjust the tool complexity with respect to the desired modeling complexity. We demonstrate the effectiveness of our technique on a wide range of manmade models with structural features, often containing multiple connected pieces.Item Flowstrates: An Approach for Visual Exploration of Temporal Origin-Destination Data(The Eurographics Association and Blackwell Publishing Ltd., 2011) Boyandin, Ilya; Bertini, Enrico; Bak, Peter; Lalanne, Denis; H. Hauser, H. Pfister, and J. J. van WijkMany origin-destination datasets have become available in the recent years, e.g. flows of people, animals, money, material, or network traffic between pairs of locations, but appropriate techniques for their exploration still have to be developed. Especially, supporting the analysis of datasets with a temporal dimension remains a significant challenge. Many techniques for the exploration of spatio-temporal data have been developed, but they prove to be only of limited use when applied to temporal origin-destination datasets.We present Flowstrates, a new interactive visualization approach in which the origins and the destinations of the flows are displayed in two separate maps, and the changes over time of the flow magnitudes are represented in a separate heatmap view in the middle. This allows the users to perform spatial visual queries, focusing on different regions of interest for the origins and destinations, and to analyze the changes over time provided with the means of flow ordering, filtering and aggregation in the heatmap. In this paper, we discuss the challenges associated with the visualization of temporal origin-destination data, introduce our solution, and present several usage scenarios showing how the tool we have developed supports them.Item Paint Mesh Cutting(The Eurographics Association and Blackwell Publishing Ltd., 2011) Fan, Lubin; Liu, Ligang; Liu, Kun; M. Chen and O. DeussenWe present a novel progressive painting-based mesh cut out tool, called Paint Mesh Cutting, for interactive mesh segmentation. Different from the previous user interfaces, the user only needs to draw a single stroke on the foreground region and then obtains the desired cutting part at an interactive rate. Moreover, the user progressively paints the region of interest using a brush and has the instant feedback on cutting results as he/she drags the mouse. This is achieved by efficient local graph-cut based optimizations based on the Gaussian mixture models (GMM) on the shape diameter function (SDF) metric of the shape. We demonstrate a number of various examples to illustrate the flexibility and applicability of our system and present a user study that supports the advantages of our user interface.Item Symmetry Hierarchy of Man-Made Objects(The Eurographics Association and Blackwell Publishing Ltd., 2011) Wang, Yanzhen; Xu, Kai; Li, Jun; Zhang, Hao; Shamir, Ariel; Liu, Ligang; Cheng, Zhi-Quan; Xiong, Y.; M. Chen and O. DeussenWe introduce symmetry hierarchy of man-made objects, a high-level structural representation of a 3D model providing a symmetry-induced, hierarchical organization of the model's constituent parts. Given an input mesh, we segment it into primitive parts and build an initial graph which encodes inter-part symmetries and connectivity relations, as well as self-symmetries in individual parts. The symmetry hierarchy is constructed from the initial graph via recursive graph contraction which either groups parts by symmetry or assembles connected sets of parts. The order of graph contraction is dictated by a set of precedence rules designed primarily to respect the law of symmetry in perceptual grouping and the principle of compactness of representation. We show that symmetry hierarchy naturally implies a hierarchical segmentation that is more meaningful than those produced by local geometric considerations. We also develop an application of symmetry hierarchies for structural shape editing.Item An Energy-Conserving Hair Reflectance Model(The Eurographics Association and Blackwell Publishing Ltd., 2011) d'Eon, Eugene; Francois, Guillaume; Hill, Martin; Letteri, Joe; Aubry, Jean-Marie; Ravi Ramamoorthi and Erik ReinhardWe present a reflectance model for dielectric cylinders with rough surfaces such as human hair fibers. Our model is energy conserving and can evaluate arbitrarily many orders of internal reflection. Accounting for compression and contraction of specular cones produces a new longitudinal scattering function which is non-Gaussian and includes an off-specular peak. Accounting for roughness in the azimuthal direction leads to an integral across the hair fiber which is efficiently evaluated using a Gaussian quadrature. Solving cubic equations is avoided, caustics are included in the model in a consistent fashion, and more accurate colors are predicted by considering many internal pathways.Item Stable Morse Decompositions for Piecewise Constant Vector Fields on Surfaces(The Eurographics Association and Blackwell Publishing Ltd., 2011) Szymczak, Andrzej; H. Hauser, H. Pfister, and J. J. van WijkNumerical simulations and experimental observations are inherently imprecise. Therefore, most vector fields of interest in scientific visualization are known only up to an error. In such cases, some topological features, especially those not stable enough, may be artifacts of the imprecision of the input. This paper introduces a technique to compute topological features of user-prescribed stability with respect to perturbation of the input vector field. In order to make our approach simple and efficient, we develop our algorithms for the case of piecewise constant (PC) vector fields. Our approach is based on a super-transition graph, a common graph representation of all PC vector fields whose vector value in a mesh triangle is contained in a convex set of vectors associated with that triangle. The graph is used to compute a Morse decomposition that is coarse enough to be correct for all vector fields satisfying the constraint. Apart from computing stable Morse decompositions, our technique can also be used to estimate the stability of Morse sets with respect to perturbation of the vector field or to compute topological features of continuous vector fields using the PC framework.