43-Issue 3
Permanent URI for this collection
Browse
Browsing 43-Issue 3 by Issue Date
Now showing 1 - 20 of 36
Results Per Page
Sort Options
Item Exploring Classifiers with Differentiable Decision Boundary Maps(The Eurographics Association and John Wiley & Sons Ltd., 2024) Machado, Alister; Behrisch, Michael; Telea, Alexandru; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaExplaining Machine Learning (ML) - and especially Deep Learning (DL) - classifiers' decisions is a subject of interest across fields due to the increasing ubiquity of such models in computing systems. As models get increasingly complex, relying on sophisticated machinery to recognize data patterns, explaining their behavior becomes more difficult. Directly visualizing classifier behavior is in general infeasible, as they create partitions of the data space, which is typically high dimensional. In recent years, Decision Boundary Maps (DBMs) have been developed, taking advantage of projection and inverse projection techniques. By being able to map 2D points back to the data space and subsequently run a classifier, DBMs represent a slice of classifier outputs. However, we recognize that DBMs without additional explanatory views are limited in their applicability. In this work, we propose augmenting the naive DBM generating process with views that provide more in-depth information about classifier behavior, such as whether the training procedure is locally stable. We describe our proposed views - which we term Differentiable Decision Boundary Maps - over a running example, explaining how our work enables drawing new and useful conclusions from these dense maps. We further demonstrate the value of these conclusions by showing how useful they would be in carrying out or preventing a dataset poisoning attack. We thus provide evidence of the ability of our proposed views to make DBMs significantly more trustworthy and interpretable, increasing their utility as a model understanding tool.Item Generating Euler Diagrams Through Combinatorial Optimization(The Eurographics Association and John Wiley & Sons Ltd., 2024) Rottmann, Peter; Rodgers, Peter; Yan, Xinyuan; Archambault, Daniel; Wang, Bei; Haunert, Jan-Henrik; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaCan a given set system be drawn as an Euler diagram? We present the first method that correctly decides this question for arbitrary set systems if the Euler diagram is required to represent each set with a single connected region. If the answer is yes, our method constructs an Euler diagram. If the answer is no, our method yields an Euler diagram for a simplified version of the set system, where a minimum number of set elements have been removed. Further, we integrate known wellformedness criteria for Euler diagrams as additional optimization objectives into our method. Our focus lies on the computation of a planar graph that is embedded in the plane to serve as the dual graph of the Euler diagram. Since even a basic version of this problem is known to be NP-hard, we choose an approach based on integer linear programming (ILP), which allows us to compute optimal solutions with existing mathematical solvers. For this, we draw upon previous research on computing planar supports of hypergraphs and adapt existing ILP building blocks for contiguity-constrained spatial unit allocation and the maximum planar subgraph problem. To generate Euler diagrams for large set systems, for which the proposed simplification through element removal becomes indispensable, we also present an efficient heuristic. We report on experiments with data from MovieDB and Twitter. Over all examples, including 850 non-trivial instances, our exact optimization method failed only for one set system to find a solution without removing a set element. However, with the removal of only a few set elements, the Euler diagrams can be substantially improved with respect to our wellformedness criteria.Item Guided By AI: Navigating Trust, Bias, and Data Exploration in AI-Guided Visual Analytics(The Eurographics Association and John Wiley & Sons Ltd., 2024) Ha, Sunwoo; Monadjemi, Shayan; Ottley, Alvitta; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaThe increasing integration of artificial intelligence (AI) in visual analytics (VA) tools raises vital questions about the behavior of users, their trust, and the potential of induced biases when provided with guidance during data exploration. We present an experiment where participants engaged in a visual data exploration task while receiving intelligent suggestions supplemented with four different transparency levels. We also modulated the difficulty of the task (easy or hard) to simulate a more tedious scenario for the analyst. Our results indicate that participants were more inclined to accept suggestions when completing a more difficult task despite the AI's lower suggestion accuracy. Moreover, the levels of transparency tested in this study did not significantly affect suggestion usage or subjective trust ratings of the participants. Additionally, we observed that participants who utilized suggestions throughout the task explored a greater quantity and diversity of data points. We discuss these findings and the implications of this research for improving the design and effectiveness of AI-guided VA tools.Item Topological Characterization and Uncertainty Visualization of Atmospheric Rivers(The Eurographics Association and John Wiley & Sons Ltd., 2024) Lan, Fangfei; Gamelin, Brandi; Yan, Lin; Wang, Jiali; Wang, Bei; Guo, Hanqi; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaAtmospheric rivers (ARs) are long, narrow regions of water vapor in the Earth's atmosphere that transport heat and moisture from the tropics to the mid-latitudes. ARs are often associated with extreme weather events in North America and contribute significantly to water supply and flood risk. However, characterizing ARs has been a major challenge due to the lack of a universal definition and their structural variations. Existing AR detection tools (ARDTs) produce distinct AR boundaries for the same event, making the risk assessment of ARs a difficult task. Understanding these uncertainties is crucial to improving the predictability of AR impacts, including their landfall areas and associated precipitation, which could cause catastrophic flooding and landslides over the coastal regions. In this work, we develop an uncertainty visualization framework that captures boundary and interior uncertainties, i.e., structural variations, of an ensemble of ARs that arise from a set of ARDTs. We first provide a statistical overview of the AR boundaries using the contour boxplots of Whitaker et al. that highlight the structural variations of AR boundaries based on their nesting relationships. We then introduce the topological skeletons of ARs based on Morse complexes that characterize the interior variation of an ensemble of ARs. We propose an uncertainty visualization of these topological skeletons, inspired by MetroSets of Jacobson et al. that emphasizes the agreements and disagreements across the ensemble members. Through case studies and expert feedback, we demonstrate that the two approaches complement each other, and together they could facilitate an effective comparative analysis process and provide a more confident outlook on an AR's shape, area, and onshore impact.Item Investigating the Effect of Operation Mode and Manifestation on Physicalizations of Dynamic Processes(The Eurographics Association and John Wiley & Sons Ltd., 2024) Pahr, Daniel; Ehlers, Henry; Wu, Hsiang-Yun; Waldner, Manuela; Raidou, Renata Georgia; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaWe conducted a study to systematically investigate the communication of complex dynamic processes along a two-dimensional design space, where the axes represent a representation's manifestation (physical or virtual) and operation (manual or automatic).We exemplify the design space on a model embodying cardiovascular pathologies, represented by a mechanism where a liquid is pumped into a draining vessel, with complications illustrated through modifications to the model. The results of a mixed-methods lab study with 28 participants show that both physical manifestation and manual operation have a strong positive impact on the audience's engagement. The study does not show a measurable knowledge increase with respect to cardiovascular pathologies using manually operated physical representations. However, subjectively, participants report a better understanding of the process-mainly through non-visual cues like haptics, but also auditory cues. The study also indicates an increased task load when interacting with the process, which, however, seems to play a minor role for the participants. Overall, the study shows a clear potential of physicalization for the communication of complex dynamic processes, which only fully unfold if observers have to chance to interact with the process.Item Visual Analytics for Fine-grained Text Classification Models and Datasets(The Eurographics Association and John Wiley & Sons Ltd., 2024) Battogtokh, Munkhtulga; Xing, Yiwen; Davidescu, Cosmin; Abdul-Rahman, Alfie; Luck, Michael; Borgo, Rita; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaIn natural language processing (NLP), text classification tasks are increasingly fine-grained, as datasets are fragmented into a larger number of classes that are more difficult to differentiate from one another. As a consequence, the semantic structures of datasets have become more complex, and model decisions more difficult to explain. Existing tools, suited for coarse-grained classification, falter under these additional challenges. In response to this gap, we worked closely with NLP domain experts in an iterative design-and-evaluation process to characterize and tackle the growing requirements in their workflow of developing fine-grained text classification models. The result of this collaboration is the development of SemLa, a novel Visual Analytics system tailored for 1) dissecting complex semantic structures in a dataset when it is spatialized in model embedding space, and 2) visualizing fine-grained nuances in the meaning of text samples to faithfully explain model reasoning. This paper details the iterative design study and the resulting innovations featured in SemLa. The final design allows contrastive analysis at different levels by unearthing lexical and conceptual patterns including biases and artifacts in data. Expert feedback on our final design and case studies confirm that SemLa is a useful tool for supporting model validation and debugging as well as data annotation.Item Beyond ExaBricks: GPU Volume Path Tracing of AMR Data(The Eurographics Association and John Wiley & Sons Ltd., 2024) Zellmann, Stefan; Wu, Qi; Sahistan, Alper; Ma, Kwan-Liu; Wald, Ingo; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaAdaptive Mesh Refinement (AMR) is becoming a prevalent data representation for HPC, and thus also for scientific visualization. AMR data is usually cell centric (which imposes numerous challenges), complex, and generally hard to render. Recent work on GPU-accelerated AMR rendering has made much progress towards real-time volume and isosurface rendering of such data, but so far this work has focused exclusively on ray marching, with simple lighting models and without scattering events or global illumination. True high-quality rendering requires a modified approach that is able to trace arbitrary incoherent paths; but this may not be a perfect fit for the types of data structures recently developed for ray marching. In this paper, we describe a novel approach to high-quality path tracing of complex AMR data, with a specific focus on analyzing and comparing different data structures and algorithms to achieve this goal.Item Instantaneous Visual Analysis of Blood Flow in Stenoses Using Morphological Similarity(The Eurographics Association and John Wiley & Sons Ltd., 2024) Eulzer, Pepe; Richter, Kevin; Hundertmark, Anna; Wickenhoefer, Ralph; Klingner, Carsten; Lawonn, Kai; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaThe emergence of computational fluid dynamics (CFD) enabled the simulation of intricate transport processes, including flow in physiological structures, such as blood vessels. While these so-called hemodynamic simulations offer groundbreaking opportunities to solve problems at the clinical forefront, a successful translation of CFD to clinical decision-making is challenging. Hemodynamic simulations are intrinsically complex, time-consuming, and resource-intensive, which conflicts with the timesensitive nature of clinical workflows and the fact that hospitals usually do not have the necessary resources or infrastructure to support CFD simulations. To address these transfer challenges, we propose a novel visualization system which enables instant flow exploration without performing on-site simulation. To gain insights into the viability of the approach, we focus on hemodynamic simulations of the carotid bifurcation, which is a highly relevant arterial subtree in stroke diagnostics and prevention. We created an initial database of 120 high-resolution carotid bifurcation flow models and developed a set of similarity metrics used to place a new carotid surface model into a neighborhood of simulated cases with the highest geometric similarity. The neighborhood can be immediately explored and the flow fields analyzed.We found that if the artery models are similar enough in the regions of interest, a new simulation leads to coinciding results, allowing the user to circumvent individual flow simulations. We conclude that similarity-based visual analysis is a promising approach toward the usability of CFD in medical practice.Item From Delays to Densities: Exploring Data Uncertainty through Speech, Text, and Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2024) Stokes, Chase; Sanker, Chelsea; Cogley, Bridget; Setlur, Vidya; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaUnderstanding and communicating data uncertainty is crucial for making informed decisions in sectors like finance and healthcare. Previous work has explored how to express uncertainty in various modes. For example, uncertainty can be expressed visually with quantile dot plots or linguistically with hedge words and prosody. Our research aims to systematically explore how variations within each mode contribute to communicating uncertainty to the user; this allows us to better understand each mode's affordances and limitations. We completed an exploration of the uncertainty design space based on pilot studies and ran two crowdsourced experiments examining how speech, text, and visualization modes and variants within them impact decision-making with uncertain data. Visualization and text were most effective for rational decision-making, though text resulted in lower confidence. Speech garnered the highest trust despite sometimes leading to risky decisions. Results from these studies indicate meaningful trade-offs among modes of information and encourage exploration of multimodal data representations.Item DynTrix: A Hybrid Representation for Dynamic Graphs(The Eurographics Association and John Wiley & Sons Ltd., 2024) Vago, Benjamin; Archambault, Daniel; Arleo, Alessio; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaHybrid graph representations combine two or more network visualization techniques in a unique drawing, simultaneously leveraging their strong traits. Since their introduction in the early 2000s, hybrid representations have gained significant research interest, with the introduction of new techniques and comparative user studies. However, all this research has not considered dynamic graphs. In this paper, we investigate hybrid graph representations in a dynamic network context and present DynTrix. Our system uses the NodeTrix representation as a basis, but the research extends this representation to the dynamic network domain. DynTrix supports automatic or manually created clusters/matrices across time. Drawing stability is implemented through aggregation and users can rearrange the nodes/matrix positions and pin them. DynTrix visualizes the temporal dynamics of the network through a combination of movement and element highlighting. We also introduce the concept of volatility, that allows the identification of actors in the network that are the most volatile. Matrices can be ordered such that stable cores gravitate towards the centre of the matrix. We integrate this technique in a visual analytics application for the exploration of offline dynamic networks and evaluate our system through case studies and qualitative expert interviews. Experts agree on the capabilities of the system, noting its potential for the analysis of dynamic networks through hybrid representations.Item AVA: Towards Autonomous Visualization Agents through Visual Perception-Driven Decision-Making(The Eurographics Association and John Wiley & Sons Ltd., 2024) Liu, Shusen; Miao, Haichao; Li, Zhimin; Olson, Matthew; Pascucci, Valerio; Bremer, Peer-Timo; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaWith recent advances in multi-modal foundation models, the previously text-only large language models (LLM) have evolved to incorporate visual input, opening up unprecedented opportunities for various applications in visualization. Compared to existing work on LLM-based visualization works that generate and control visualization with textual input and output only, the proposed approach explores the utilization of the visual processing ability of multi-modal LLMs to develop Autonomous Visualization Agents (AVAs) that can evaluate the generated visualization and iterate on the result to accomplish user-defined objectives defined through natural language. We propose the first framework for the design of AVAs and present several usage scenarios intended to demonstrate the general applicability of the proposed paradigm. Our preliminary exploration and proof-of-concept agents suggest that this approach can be widely applicable whenever the choices of appropriate visualization parameters require the interpretation of previous visual output. Our study indicates that AVAs represent a general paradigm for designing intelligent visualization systems that can achieve high-level visualization goals, which pave the way for developing expert-level visualization agents in the future.Item AutoVizuA11y: A Tool to Automate Screen Reader Accessibility in Charts(The Eurographics Association and John Wiley & Sons Ltd., 2024) Duarte, Diogo; Costa, Rita; Bizarro, Pedro; Duarte, Carlos; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaCharts remain widely inaccessible on the web for users of assistive technologies like screen readers. This is, in part, due to data visualization experts still lacking the experience, knowledge, and time to consistently implement accessible charts. As a result, screen reader users are prevented from accessing information and are forced to resort to tabular alternatives (if available), limiting the insights that they can gather. We worked with both groups to develop AutoVizuA11y, a tool that automates the addition of accessible features to web-based charts. It generates human-like descriptions of the data using a large language model, calculates statistical insights from the data, and provides keyboard navigation between multiple charts and underlying elements. Fifteen screen reader users interacted with charts made accessible with AutoVizuA11y in a usability test, thirteen of which praised the tool for its intuitive design, short learning curve, and rich information. On average, they took 66 seconds to complete each of the eight analytical tasks presented and achieved a success rate of 89%. Through a SUS questionnaire, the participants gave AutoVizuA11y an ''Excellent'' score-83.5/100 points. We also gathered feedback from two data visualization experts who used the tool. They praised the tool availability, ease of use and functionalities, and provided feedback to add AutoVizuA11y support for other technologies in the future.Item Improving Temporal Treemaps by Minimizing Crossings(The Eurographics Association and John Wiley & Sons Ltd., 2024) Dobler, Alexander; Nöllenburg, Martin; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaTemporal trees are trees that evolve over a discrete set of time steps. Each time step is associated with a node-weighted rooted tree and consecutive trees change by adding new nodes, removing nodes, splitting nodes, merging nodes, and changing node weights. Recently, two-dimensional visualizations of temporal trees called temporal treemaps have been proposed, representing the temporal dimension on the x-axis, and visualizing the tree modifications over time as temporal edges of varying thickness. The tree hierarchy at each time step is depicted as a vertical, one-dimensional nesting relationships, similarly to standard, nontemporal treemaps. Naturally, temporal edges can cross in the visualization, decreasing readability. Heuristics were proposed to minimize such crossings in the literature, but a formal characterization and minimization of crossings in temporal treemaps was left open. In this paper, we propose two variants of defining crossings in temporal treemaps that can be combinatorially characterized. For each variant, we propose an exact optimization algorithm based on integer linear programming and heuristics based on graph drawing techniques. In an extensive experimental evaluation, we show that on the one hand the exact algorithms reduce the number of crossings by a factor of 20 on average compared to the previous algorithms. On the other hand, our new heuristics are faster by a factor of more than 100 and still reduce the number of crossings by a factor of almost three.Item psudo: Exploring Multi-Channel Biomedical Image Data with Spatially and Perceptually Optimized Pseudocoloring(The Eurographics Association and John Wiley & Sons Ltd., 2024) Warchol, Simon; Troidl, Jakob; Muhlich, Jeremy; Krueger, Robert; Hoffer, John; Lin, Tica; Beyer, Johanna; Glassman, Elena; Sorger, Peter; Pfister, Hanspeter; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaOver the past century, multichannel fluorescence imaging has been pivotal in myriad scientific breakthroughs by enabling the spatial visualization of proteins within a biological sample. With the shift to digital methods and visualization software, experts can now flexibly pseudocolor and combine image channels, each corresponding to a different protein, to explore their spatial relationships. We thus propose psudo, an interactive system that allows users to create optimal color palettes for multichannel spatial data. In psudo, a novel optimization method generates palettes that maximize the perceptual differences between channels while mitigating confusing color blending in overlapping channels. We integrate this method into a system that allows users to explore multi-channel image data and compare and evaluate color palettes for their data. An interactive lensing approach provides on-demand feedback on channel overlap and a color confusion metric while giving context to the underlying channel values. Color palettes can be applied globally or, using the lens, to local regions of interest. We evaluate our palette optimization approach using three graphical perception tasks in a crowdsourced user study with 150 participants, showing that users are more accurate at discerning and comparing the underlying data using our approach. Additionally, we showcase psudo in a case study exploring the complex immune responses in cancer tissue data with a biologist.Item Sparse q-ball imaging towards efficient visual exploration of HARDI data(The Eurographics Association and John Wiley & Sons Ltd., 2024) Lei, Danhua; Miandji, Ehsan; Unger, Jonas; Hotz, Ingrid; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaDiffusion-weighted magnetic resonance imaging (D-MRI) is a technique to measure the diffusion of water, in biological tissues. It is used to detect microscopic patterns, such as neural fibers in the living human brain, with many medical and neuroscience applications e.g. for fiber tracking. In this paper, we consider High-Angular Resolution Diffusion Imaging (HARDI) which provides one of the richest representations of water diffusion. It records the movement of water molecules by measuring diffusion under 64 or more directions. A key challenge is that it generates high-dimensional, large, and complex datasets. In our work, we develop a novel representation that exploits the inherent sparsity of the HARDI signal by approximating it as a linear sum of basic atoms in an overcomplete data-driven dictionary using only a sparse set of coefficients. We show that this approach can be efficiently integrated into the standard q-ball imaging pipeline to compute the diffusion orientation distribution function (ODF). Sparse representations have the potential to reduce the size of the data while also giving some insight into the data. To explore the results, we provide a visualization of the atoms of the dictionary and their frequency in the data to highlight the basic characteristics of the data. We present our proposed pipeline and demonstrate its performance on 5 HARDI datasets.Item Should I make it round? Suitability of circular and linear layouts for comparative tasks with matrix and connective data(The Eurographics Association and John Wiley & Sons Ltd., 2024) Ståhlbom, Emilia; Molin, Jesper; Ynnerman, Anders; Lundström, Claes; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaVisual representations based on circular shapes are frequently used in visualization applications. One example are circos plots within bioinformatics, which bend graphs into a wheel of information with connective lines running through the center like spokes. The results are aesthetically appealing and impressive visualizations that fit long data sequences into a small quadratic space. However, the authors' experiences are that when asked, a visualization researcher would generally advise against making visualizations with radial layouts. Upon reviewing the literature we found that there is evidence that circular layouts are preferable in some cases, but we found no clear evidence for what layout is preferable for matrices and connective data in particular, which both are common data types in circos plots. In this work, we thus performed a user study to compare circular and linear layouts. The tasks are inspired by genomics data, but our results generalize to many other application areas, involving comparison and connective data. To build the prototype we utilized Gosling, a grammar for visualizing genomics data. We contribute empirical evidence on the suitedness of linear versus circular layouts, adding to the specific and general knowledge concerning perception of circular graphs. In addition, we contribute a case study evaluation of the grammar Gosling as a rapid prototyping language, confirming its utility and providing guidance on suitable areas for future development.Item GerontoVis: Data Visualization at the Confluence of Aging(The Eurographics Association and John Wiley & Sons Ltd., 2024) While, Zack; Crouser, R. Jordan; Sarvghad, Ali; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaDespite the explosive growth of the aging population worldwide, older adults have been largely overlooked by visualization research. This paper is a critical reflection on the underrepresentation of older adults in visualization research. We discuss why investigating visualization at the intersection of aging matters, why older adults may have been omitted from sample populations in visualization research, how aging may affect visualization use, and how this differs from traditional accessibility research. To encourage further discussion and novel scholarship in this area, we introduce GerontoVis, a term which encapsulates research and practice of data visualization design that primarily focuses on older adults. By introducing this new subfield of visualization research, we hope to shine a spotlight on this growing user population and stimulate innovation toward the development of aging-aware visualization tools. We offer a birds-eye view of the GerontoVis landscape, explore some of its unique challenges, and identify promising areas for future research.Item ChoreoVis: Planning and Assessing Formations in Dance Choreographies(The Eurographics Association and John Wiley & Sons Ltd., 2024) Beck, Samuel; Doerr, Nina; Kurzhals, Kuno; Riedlinger, Alexander; Schmierer, Fabian; Sedlmair, Michael; Koch, Steffen; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaSports visualization has developed into an active research field over the last decades. Many approaches focus on analyzing movement data recorded from unstructured situations, such as soccer. For the analysis of choreographed activities like formation dancing, however, the goal differs, as dancers follow specific formations in coordinated movement trajectories. To date, little work exists on how visual analytics methods can support such choreographed performances. To fill this gap, we introduce a new visual approach for planning and assessing dance choreographies. In terms of planning choreographies, we contribute a web application with interactive authoring tools and views for the dancers' positions and orientations, movement trajectories, poses, dance floor utilization, and movement distances. For assessing dancers' real-world movement trajectories, extracted by manual bounding box annotations, we developed a timeline showing aggregated trajectory deviations and a dance floor view for detailed trajectory comparison. Our approach was developed and evaluated in collaboration with dance instructors, showing that introducing visual analytics into this domain promises improvements in training efficiency for the future.Item Transparent Risks: The Impact of the Specificity and Visual Encoding of Uncertainty on Decision Making(The Eurographics Association and John Wiley & Sons Ltd., 2024) Matzen, Laura E.; Howell, Breannan C.; Tuft, Marie; Divis, Kristin M.; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaPeople frequently make decisions based on uncertain information. Prior research has shown that visualizations of uncertainty can help to support better decision making. However, research has also shown that different representations of the same information can lead to different patterns of decision making. It is crucial for researchers to develop a better scientific understanding of when, why and how different representations of uncertainty lead viewers to make different decisions. This paper seeks to address this need by comparing geospatial visualizations of wildfire risk to verbal descriptions of the same risk. In three experiments, we manipulated the specificity of the uncertain information as well as the visual cues used to encode risk in the visualizations. All three experiments found that participants were more likely to evacuate in response to a hypothetical wildfire if the risk information was presented verbally. When the risk was presented visually, participants were less likely to evacuate, particularly when transparency was used to encode the risk information. Experiment 1 showed that evacuation rates were lower for transparency maps than for other types of visualizations. Experiments 2 and 3 sought to replicate this effect and to test how it related to other factors. Experiment 2 varied the hue used for the transparency maps and Experiment 3 manipulated the salience of the borders between the different risk levels. These experiments showed lower evacuation rates in response to transparency maps regardless of hue. The effect was partially, but not entirely, mitigated by adding salient borders to the transparency maps. Taken together, these experiments show that using transparency to encode information about risk can lead to very different patterns of decision making than other encodings of the same information.Item Persist: Persistent and Reusable Interactions in Computational Notebooks(The Eurographics Association and John Wiley & Sons Ltd., 2024) Gadhave, Kiran; Cutler, Zach; Lex, Alexander; Aigner, Wolfgang; Archambault, Daniel; Bujack, RoxanaComputational notebooks, such as Jupyter, support rich data visualization. However, even when visualizations in notebooks are interactive, they are a dead end: Interactive data manipulations, such as selections, applying labels, filters, categorizations, or fixes to column or cell values, could be efficiently applied in interactive visual components, but interactive components typically cannot manipulate Python data structures. Furthermore, actions performed in interactive plots are lost as soon as the cell is re-run, prohibiting reusability and reproducibility. To remedy this problem, we introduce Persist, a family of techniques to (a) capture interaction provenance, enabling the persistence of interactions, and (b) map interactions to data manipulations that can be applied to dataframes.We implement our approach as a JupyterLab extension that supports tracking interactions in Vega- Altair plots and in a data table view. Persist can re-execute interaction provenance when a notebook or a cell is re-executed, enabling reproducibility and re-use.We evaluate Persist in a user study targeting data manipulations with 11 participants skilled in Python and Pandas, comparing it to traditional code-based approaches. Participants were consistently faster and were able to correctly complete more tasks with Persist.