38-Issue 3
Permanent URI for this collection
Browse
Browsing 38-Issue 3 by Subject "Applied computing"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item IGM-Vis: Analyzing Intergalactic and Circumgalactic Medium Absorption Using Quasar Sightlines in a Cosmic Web Context(The Eurographics Association and John Wiley & Sons Ltd., 2019) Burchett, Joseph N.; Abramov, David; Otto, Jasmine Tan; Artanegara, Cassia; Prochaska, Jason Xavier; Forbes, Angus G.; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe introduce IGM-Vis, a novel astrophysics visualization and data analysis application for investigating galaxies and the gas that surrounds them in context with their larger scale environment, the Cosmic Web. Environment is an important factor in the evolution of galaxies from actively forming stars to quiescent states with little, if any, discernible star formation activity. The gaseous halos of galaxies (the circumgalactic medium, or CGM) play a critical role in their evolution, because the gas necessary to fuel star formation and any gas expelled from widely observed galactic winds must encounter this interface region between galaxies and the intergalactic medium (IGM). We present a taxonomy of tasks typically employed in IGM/CGM studies informed by a survey of astrophysicists at various career levels, and demonstrate how these tasks are facilitated via the use of our visualization software. Finally, we evaluate the effectiveness of IGM-Vis through two in-depth use cases that depict real-world analysis sessions that use IGM/CGM data.Item Interactive Volumetric Visual Analysis of Glycogen-derived Energy Absorption in Nanometric Brain Structures(The Eurographics Association and John Wiley & Sons Ltd., 2019) Agus, Marco; Calì, Corrado; Al-Awami, Ali K.; Gobbetti, Enrico; Magistretti, Pierre J.; Hadwiger, Markus; Gleicher, Michael and Viola, Ivan and Leitte, HeikeDigital acquisition and processing techniques are changing the way neuroscience investigation is carried out. Emerging applications range from statistical analysis on image stacks to complex connectomics visual analysis tools targeted to develop and test hypotheses of brain development and activity. In this work, we focus on neuroenergetics, a field where neuroscientists analyze nanoscale brain morphology and relate energy consumption to glucose storage in form of glycogen granules. In order to facilitate the understanding of neuroenergetic mechanisms, we propose a novel customized pipeline for the visual analysis of nanometric-level reconstructions based on electron microscopy image data. Our framework supports analysis tasks by combining i) a scalable volume visualization architecture able to selectively render image stacks and corresponding labelled data, ii) a method for highlighting distance-based energy absorption probabilities in form of glow maps, and iii) a hybrid connectivitybased and absorption-based interactive layout representation able to support queries for selective analysis of areas of interest and potential activity within the segmented datasets. This working pipeline is currently used in a variety of studies in the neuroenergetics domain. Here, we discuss a test case in which the framework was successfully used by domain scientists for the analysis of aging effects on glycogen metabolism, extracting knowledge from a series of nanoscale brain stacks of rodents somatosensory cortex.Item Multiple Views: Different Meanings and Collocated Words(The Eurographics Association and John Wiley & Sons Ltd., 2019) Roberts, Jonathan; Al-Maneea, Hayder; Butcher, Peter; Lew, Robert; Rees, Geraint Paul; Sharma, Nirwan; Frankenberg-Garcia, Ana; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe report on an in-depth corpus linguistic study on 'multiple views' terminology and word collocation. We take a broad interpretation of these terms, and explore the meaning and diversity of their use in visualisation literature. First we explore senses of the term 'multiple views' (e.g.,'multiple views' can mean juxtaposition, many viewport projections or several alternative opinions). Second, we investigate term popularity and frequency of occurrences, investigating usage of 'multiple' and 'view' (e.g., multiple views, multiple visualisations, multiple sets). Third, we investigate word collocations and terms that have a similar sense (e.g., multiple views, side-by-side, small multiples). We built and used several corpora, including a 6-million-word corpus of all IEEE Visualisation conference articles published in IEEE Transactions on Visualisation and Computer Graphics 2012 to 2017. We draw on our substantial experience from early work in coordinated and multiple views, and with collocation analysis develop several lists of terms. This research provides insight into term use, a reference for novice and expert authors in visualisation, and contributes a taxonomy of 'multiple view' terms.Item A Stable Graph Layout Algorithm for Processes(The Eurographics Association and John Wiley & Sons Ltd., 2019) Mennens, Robin; Scheepens, Roeland; Westenberg, Michel; Gleicher, Michael and Viola, Ivan and Leitte, HeikeProcess mining enables organizations to analyze data about their (business) processes. Visualization is key to gaining insight into these processes and the associated data. Process visualization requires a high-quality graph layout that intuitively represents the semantics of the process. Process analysis additionally requires interactive filtering to explore the process data and process graph. The ideal process visualization therefore provides a high-quality, intuitive layout and preserves the mental map of the user during the visual exploration. The current industry standard used for process visualization does not satisfy either of these requirements. In this paper, we propose a novel layout algorithm for processes based on the Sugiyama framework. Our approach consists of novel ranking and order constraint algorithms and a novel crossing minimization algorithm. These algorithms make use of the process data to compute stable, high-quality layouts. In addition, we use phased animation to further improve mental map preservation. Quantitative and qualitative evaluations show that our approach computes layouts of higher quality and preserves the mental map better than the industry standard. Additionally, our approach is substantially faster, especially for graphs with more than 250 edges.Item VIAN: A Visual Annotation Tool for Film Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2019) Halter, Gaudenz; Ballester-Ripoll, Rafael; Flueckiger, Barbara; Pajarola, Renato; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWhile color plays a fundamental role in film design and production, existing solutions for film analysis in the digital humanities address perceptual and spatial color information only tangentially. We introduce VIAN, a visual film annotation system centered on the semantic aspects of film color analysis. The tool enables expert-assessed labeling, curation, visualization and classification of color features based on their perceived context and aesthetic quality. It is the first of its kind that incorporates foreground-background information made possible by modern deep learning segmentation methods. The proposed tool seamlessly integrates a multimedia data management system, so that films can undergo a full color-oriented analysis pipeline.Item Visual Analysis of Charge Flow Networks for Complex Morphologies(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kottravel, Sathish; Falk, Martin; Bin Masood, Talha; linares, mathieu; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn the field of organic electronics, understanding complex material morphologies and their role in efficient charge transport in solar cells is extremely important. Related processes are studied using the Ising model and Kinetic Monte Carlo simulations resulting in large ensembles of stochastic trajectories. Naive visualization of these trajectories, individually or as a whole, does not lead to new knowledge discovery through exploration. In this paper, we present novel visualization and exploration methods to analyze this complex dynamic data, which provide succinct and meaningful abstractions leading to scientific insights. We propose a morphology abstraction yielding a network composed of material pockets and the interfaces, which serves as backbone for the visualization of the charge diffusion. The trajectory network is created using a novel way of implicitly attracting the trajectories to the skeleton of the morphology relying on a relaxation process. Each individual trajectory is then represented as a connected sequence of nodes in the skeleton. The final network summarizes all of these sequences in a single aggregated network. We apply our method to three different morphologies and demonstrate its suitability for exploring this kind of data.