Volume 32 (2013)
Permanent URI for this community
Browse
Browsing Volume 32 (2013) by Subject "and object representations"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Animation-Aware Quadrangulation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Marcias, Giorgio; Pietroni, Nico; Panozzo, Daniele; Puppo, Enrico; Sorkine-Hornung, Olga; Yaron Lipman and Hao ZhangGeometric meshes that model animated characters must be designed while taking into account the deformations that the shape will undergo during animation. We analyze an input sequence of meshes with point-to-point correspondence, and we automatically produce a quadrangular mesh that fits well the input animation. We first analyze the local deformation that the surface undergoes at each point, and we initialize a cross field that remains as aligned as possible to the principal directions of deformation throughout the sequence. We then smooth this cross field based on an energy that uses a weighted combination of the initial field and the local amount of stretch. Finally, we compute a field-aligned quadrangulation with an off-the-shelf method. Our technique is fast and very simple to implement, and it significantly improves the quality of the output quad mesh and its suitability for character animation, compared to creating the quad mesh based on a single pose. We present experimental results and comparisons with a state-of-the-art quadrangulation method, on both sequences from 3D scanning and synthetic sequences obtained by a rough animation of a triangulated model.Item Bilateral Hermite Radial Basis Functions for Contour-based Volume Segmentation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ijiri, Takashi; Yoshizawa, Shin; Sato, Yu; Ito, Masaaki; Yokota, Hideo; I. Navazo, P. PoulinIn this paper, we propose a novel contour-based volume image segmentation technique. Our technique is based on an implicit surface reconstruction strategy, whereby a signed scalar field is generated from user-specified contours. The key idea is to compute the scalar field in a joint spatial-range domain (i.e., bilateral domain) and resample its values on an image manifold. We introduce a new formulation of Hermite radial basis function (HRBF) interpolation to obtain the scalar field in the bilateral domain. In contrast to previous implicit methods, bilateral HRBF (BHRBF) generates a segmentation boundary that passes through all contours, fits high-contrast image edges if they exist, and has a smooth shape in blurred areas of images. We also propose an acceleration scheme for computing B-HRBF to support a real-time and intuitive segmentation interface. In our experiments, we achieved high-quality segmentation results for regions of interest with high-contrast edges and blurred boundaries.Item Constructing Isosurfaces with Sharp Edges and Corners using Cube Merging(The Eurographics Association and Blackwell Publishing Ltd., 2013) Bhattacharya, Arindam; Wenger, Rephael; B. Preim, P. Rheingans, and H. TheiselA number of papers present algorithms to construct isosurfaces with sharp edges and corners from hermite data, i.e. the exact surface normals at the exact intersection of the surface and grid edges. We discuss some fundamental problems with the previous algorithms and describe a new approach, based on merging grid cubes near sharp edges, that produces significantly better results. Our algorithm requires only gradients at the grid vertices, not at each surface-edge intersection point. We also give a method for measuring the correctness of the resulting sharp edges and corners in the isosurface.Item Coupled Quasi-harmonic Bases(The Eurographics Association and Blackwell Publishing Ltd., 2013) Kovnatsky, Artiom; Bronstein, Michael M.; Bronstein, Alexander M.; Glashoff, Klaus; Kimmel, Ron; I. Navazo, P. PoulinThe use of Laplacian eigenbases has been shown to be fruitful in many computer graphics applications. Today, state-of-the-art approaches to shape analysis, synthesis, and correspondence rely on these natural harmonic bases that allow using classical tools from harmonic analysis on manifolds. However, many applications involving multiple shapes are obstacled by the fact that Laplacian eigenbases computed independently on different shapes are often incompatible with each other. In this paper, we propose the construction of common approximate eigenbases for multiple shapes using approximate joint diagonalization algorithms, taking as input a set of corresponding functions (e.g. indicator functions of stable regions) on the two shapes. We illustrate the benefits of the proposed approach on tasks from shape editing, pose transfer, correspondence, and similarity.Item Guided Real-Time Scanning of Indoor Objects(The Eurographics Association and Blackwell Publishing Ltd., 2013) Kim, Young Min; Mitra, Niloy J.; Huang, Qixing; Guibas, Leonidas; B. Levy, X. Tong, and K. YinAdvances in 3D acquisition devices provide unprecedented opportunities for quickly scanning indoor environments. Such raw scans, however, are often noisy, incomplete, and significantly corrupted, making semantic scene understanding difficult, if not impossible. Unfortunately, in most existing workflows, scan quality is assessed after the scanning stage is completed, making it cumbersome to correct for significant missing data by additional scanning. In this work, we present a guided real-time scanning setup, wherein the incoming 3D data stream is continuously analyzed, and the data quality is automatically assessed. While the user is scanning an object, the proposed system discovers and highlights potential missing parts, thus guiding the operator (or an autonomous robot) as where to scan next. The proposed system assesses the quality and completeness of the 3D scan data by comparing to a large collection of commonly occurring indoor man-made objects using an efficient, robust, and effective scan descriptor. We have tested the system on a large number of simulated and real setups, and found the guided interface to be effective even in cluttered and complex indoor environments.Item Polar NURBS Surface with Curvature Continuity(The Eurographics Association and Blackwell Publishing Ltd., 2013) Shi, Kan-Le; Yong, Jun-Hai; Tang, Lei; Sun, Jia-Guang; Paul, Jean-Claude; B. Levy, X. Tong, and K. YinPolar NURBS surface is a kind of periodic NURBS surface, one boundary of which shrinks to a degenerate polar point. The specific topology of its control-point mesh offers the ability to represent a cap-like surface, which is common in geometric modeling. However, there is a critical and challenging problem that hinders its application: curvature continuity at the extraordinary singular pole. We first propose a sufficient and necessary condition of curvature continuity at the pole. Then, we present constructive methods for the two key problems respectively: how to construct a polar NURBS surface with curvature continuity and how to reform an ordinary polar NURBS surface to curvature continuous. The algorithms only depend on the symbolic representation and operations of NURBS, and they introduce no restrictions on the degree or the knot vectors. Examples and comparisons demonstrate the applications of the curvature-continuous polar NURBS surface in hole-filling and free-shape modeling.Item Sketch-Based Editing Tools for Tumour Segmentation in 3D Medical Images(The Eurographics Association and Blackwell Publishing Ltd., 2013) Heckel, Frank; Moltz, Jan H.; Tietjen, Christian; Hahn, Horst K.; Holly Rushmeier and Oliver DeussenIn the past years sophisticated automatic segmentation algorithms for various medical image segmentation problems have been developed. However, there are always cases where automatic algorithms fail to provide an acceptable segmentation. In these cases the user needs efficient segmentation editing tools, a problem which has not received much attention in research. We give a comprehensive overview on segmentation editing for three‐dimensional (3D) medical images. For segmentation editing in two‐dimensional (2D) images, we discuss a sketch‐based approach where the user modifies the segmentation in the contour domain. Based on this 2D interface, we present an image‐based as well as an image‐independent method for intuitive and efficient segmentation editing in 3D in the context of tumour segmentation in computed tomography (CT). Our editing tools have been evaluated on a database containing 1226 representative liver metastases, lung nodules and lymph nodes of different shape, size and image quality. In addition, we have performed a qualitative evaluation with radiologists and technical experts, proving the efficiency of our tools.In the past years sophisticated automatic segmentation algorithms for various medical image segmentation problems have been developed. However, there are always cases where automatic algorithms fail to provide an acceptable segmentation. In these cases the user needs efficient segmentation editing tools, a problem which has not received much attention in research. We give a comprehensive overview on segmentation editing for 3D medical images. For segmentation editing in 2D, we discuss a sketch‐based approach where the user modifies the segmentation in the contour domain. Based on this 2D interface, we present an image‐based as well as an image‐independent method for intuitive and efficient segmentation editing in 3D in the context of tumour segmentation in CT.