Volume 32 (2013)
Permanent URI for this community
Browse
Browsing Volume 32 (2013) by Title
Now showing 1 - 20 of 255
Results Per Page
Sort Options
Item 2013 Cover Image: Prism(The Eurographics Association and Blackwell Publishing Ltd., 2013) Spencer, Ben; Jones, Mark W.; Holly Rushmeier and Oliver DeussenItem 34th EUROGRAPHICS General Assembly(The Eurographics Association and Blackwell Publishing Ltd., 2013) Holly Rushmeier and Oliver DeussenItem Accurate Binary Image Selection from Inaccurate User Input(The Eurographics Association and Blackwell Publishing Ltd., 2013) Subr, Kartic; Paris, Sylvain; Soler, Cyril; Kautz, Jan; I. Navazo, P. PoulinSelections are central to image editing, e.g., they are the starting point of common operations such as copy-pasting and local edits. Creating them by hand is particularly tedious and scribble-based techniques have been introduced to assist the process. By interpolating a few strokes specified by users, these methods generate precise selections. However, most of the algorithms assume a 100 percent accurate input, and even small inaccuracies in the scribbles often degrade the selection quality, which imposes an additional burden on users. In this paper, we propose a selection technique tolerant to input inaccuracies. We use a dense conditional random field (CRF) to robustly infer a selection from possibly inaccurate input. Further, we show that patch-based pixel similarity functions yield more precise selection than simple point-wise metrics. However, efficiently solving a dense CRF is only possible in low-dimensional Euclidean spaces, and the metrics that we use are high-dimensional and often non-Euclidean.We address this challenge by embedding pixels in a low-dimensional Euclidean space with a metric that approximates the desired similarity function. The results show that our approach performs better than previous techniques and that two options are sufficient to cover a variety of images depending on whether the objects are textured.Item Adaptive Quantization Visibility Caching(The Eurographics Association and Blackwell Publishing Ltd., 2013) Popov, Stefan; Georgiev, Iliyan; Slusallek, Philipp; Dachsbacher, Carsten; I. Navazo, P. PoulinRay tracing has become a viable alternative to rasterization for interactive applications and also forms the basis of most global illumination methods. However, even today's fastest ray-tracers offer only a tight budget of rays per pixel per frame. Rendering performance can be improved by increasing this budget, or by developing methods that use it more efficiently. In this paper we propose a global visibility caching algorithm that reduces the number of shadow rays required for shading to a fraction of less than 2% in some cases. We quantize the visibility function's domain while ensuring a minimal degradation of the final image quality. To control the introduced error, we adapt the quantization locally, accounting for variations in geometry, sampling densities on both endpoints of the visibility queries, and the light signal itself. Compared to previous approaches for approximating visibility, e.g. shadow mapping, our method has several advantages: (1) it allows caching of arbitrary visibility queries between surface points and is thus applicable to all ray tracing based methods; (2) the approximation error is uniform over the entire image and can be bounded by a user-specified parameter; (3) the cache is created on-the-fly and does not waste any resources on queries that will never be used. We demonstrate the benefits of our method on Whitted-style ray tracing combined with instant radiosity, as well as an integration with bidirectional path tracing.Item Adaptive Ray-bundle Tracing with Memory Usage Prediction: Efficient Global Illumination in Large Scenes(The Eurographics Association and Blackwell Publishing Ltd., 2013) Tokuyoshi, Yusuke; Sekine, Takashi; Silva, Tiago da; Kanai, Takashi; B. Levy, X. Tong, and K. YinThis paper proposes an adaptive rendering technique for ray-bundle tracing. Ray-bundle tracing can be done by per-pixel linked-list construction on a GPU rasterization pipeline. This rasterization based approach offers significant benefits for the efficient generation of light maps (e.g., hardware acceleration, tessellation, and recycling of shaders used in real-time graphics). However, it is inapplicable to large and complex scenes due to the limited capacity of the GPU memory because it requires a high-resolution frame buffer and high-capacity node buffer for the linked-lists. In addition, memory overflow can potentially occur on the per-pixel linked-list since the memory usage of the lists is usually unknown before the rendering process. We introduce an adaptive tiling technique with memory usage prediction. Our method uses an appropriately tiled frame buffer, thus eliminating almost all of the overflow risks thanks to our adaptive tile subdivision scheme. Using this technique, we are able to render high-quality light maps of large and complex scenes which cannot be computed using previous ray-bundle based methods.Item An Algorithm for Random Fractal Filling of Space(The Eurographics Association and Blackwell Publishing Ltd., 2013) Shier, John; Bourke, Paul; Holly Rushmeier and Oliver DeussenComputational experiments with a simple algorithm show that it is possible to fill any spatial region with a random fractalization of any shape, with a continuous range of pre‐specified fractal dimensions D. The algorithm is presented here in 1, 2 or 3 physical dimensions. The size power‐law exponent c or the fractal dimension D can be specified ab initio over a substantial range. The method creates an infinite set of shapes whose areas (lengths, volumes) obey a power law and sum to the area (length and volume) to be filled. The algorithm begins by randomly placing the largest shape and continues using random search to place each smaller shape where it does not overlap or touch any previously placed shape. The resulting gasket is a single connected object.Computational experiments with a simple algorithm show that it is possible to fill any spatial region with a random fractalization Q1 of any shape, with a continuous range of pre‐specified fractal dimensions D. The algorithm is presented here in 1, 2 or 3 physical dimensions. The size power‐law exponent c or the fractal dimension D can be specified ab initio over a substantial range. The method creates an infinite set of shapes whose areas (lengths, volumes) obey a power law and sum to the area (length and volume) to be filled.Item An Algorithm for Triangulating Multiple 3D Polygons(The Eurographics Association and Blackwell Publishing Ltd., 2013) Zou, Ming; Ju, Tao; Carr, Nathan; Yaron Lipman and Hao ZhangWe present an algorithm for obtaining a triangulation of multiple, non-planar 3D polygons. The output minimizes additive weights, such as the total triangle areas or the total dihedral angles between adjacent triangles. Our algorithm generalizes a classical method for optimally triangulating a single polygon. The key novelty is a mechanism for avoiding non-manifold outputs for two and more input polygons without compromising optimality. For better performance on real-world data, we also propose an approximate solution by feeding the algorithm with a reduced set of triangles. In particular, we demonstrate experimentally that the triangles in the Delaunay tetrahedralization of the polygon vertices offer a reasonable trade off between performance and optimality.Item AmniVis - A System for Qualitative Exploration of Near-Wall Hemodynamics in Cerebral Aneurysms(The Eurographics Association and Blackwell Publishing Ltd., 2013) Neugebauer, Mathias; Lawonn, Kai; Beuing, Oliver; Berg, Philipp; Janiga, Gabor; Preim, Bernhard; B. Preim, P. Rheingans, and H. TheiselThe qualitative exploration of near-wall hemodynamics in cerebral aneurysms provides important insights for risk assessment. For instance, a direct relation between complex flow patterns and aneurysm formation could be observed. Due to the high complexity of the underlying time-dependent flow data, the exploration is challenging, in particular for medical researchers not familiar with such data. We present the AmniVis-Explorer, a system that is designed for the preparation of a qualitative medical study. The provided features were developed in close collaboration with medical researchers involved in the study. This comprises methods for a purposeful selection of surface regions of interest and a novel approach to provide a 2D overview of flow patterns that are represented by streamlines at these regions. Furthermore, we present a specialized interface that supports binary classification of patterns and temporal exploration as well as methods for selection, highlighting and automatic 3D navigation to particular patterns. Based on eight representative datasets, we conducted informal interviews with two bordcertified radiologists and a flow expert to evaluate the system. It was confirmed that the AmniVis-Explorer allows for an easy selection, qualitative exploration and classification of near-wall flow patterns that are represented by streamlines.Item Analysis and Visualization of Maps Between Shapes(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ovsjanikov, M.; Ben-Chen, M.; Chazal, F.; Guibas, L.; Holly Rushmeier and Oliver DeussenIn this paper we propose a method for analysing and visualizing individual maps between shapes, or collections of such maps. Our method is based on isolating and highlighting areas where the maps induce significant distortion of a given measure in a multi‐scale way. Unlike the majority of prior work, which focuses on discovering maps in the context of shape matching, our main focus is on evaluating, analysing and visualizing a given map, and the distortion(s) it introduces, in an efficient and intuitive way. We are motivated primarily by the fact that most existing metrics for map evaluation are quadratic and expensive to compute in practice, and that current map visualization techniques are suitable primarily for global map understanding, and typically do not highlight areas where the map fails to meet certain quality criteria in a multi‐scale way. We propose to address these challenges in a unified way by considering the functional representation of a map, and performing spectral analysis on this representation. In particular, we propose a simple multi‐scale method for map evaluation and visualization, which provides detailed multi‐scale information about the distortion induced by a map, which can be used alongside existing global visualization techniques.In this paper we propose a method for analyzing and visualizing individual maps between shapes, or collections of such maps. Our method is based on isolating and highlighting areas where the maps induce significant distortion of a given measure in a multi‐scale way. Unlike the majority of prior work which focuses on discovering maps in the context of shape matching, our main focus is on evaluating, analyzing and visualizing a given map, and the distortion(s) it introduces, in an efficient and intuitive way. We are motivated primarily by the fact that most existing metrics for map evaluation are quadratic and expensive to compute in practice, and that current map visualization techniques are suitable primarily for global map understanding, and typically do not highlight areas where the map fails to meet certain quality criteria in a multi‐scale way. We propose to address these challenges in a unified way by considering the functional representation of a map, and performing spectral analysis on this representation. In particular, we propose a simple multi‐scale method for map evaluation and visualization, which provides detailed multi‐scale information about the distortion induced by a map, which can be used alongside existing global visualization techniques.Item Analytic Rasterization of Curves with Polynomial Filters(The Eurographics Association and Blackwell Publishing Ltd., 2013) Manson, Josiah; Schaefer, Scott; I. Navazo, P. PoulinWe present a method of analytically rasterizing shapes that have curved boundaries and linear color gradients using piecewise polynomial prefilters. By transforming the convolution of filters with the image from an integral over area into a boundary integral, we find closed-form expressions for rasterizing shapes. We show that a polynomial expression can be used to rasterize any combination of polynomial curves and filters. Our rasterizer also handles rational quadratic boundaries, which allows us to evaluate circles and ellipses. We apply our technique to rasterizing vector graphics and show that our derivation gives an efficient implementation as a scanline rasterizer.Item Analytic Visibility on the GPU(The Eurographics Association and Blackwell Publishing Ltd., 2013) Auzinger, Thomas; Wimmer, Michael; Jeschke, Stefan; I. Navazo, P. PoulinThis paper presents a parallel, implementation-friendly analytic visibility method for triangular meshes. Together with an analytic filter convolution, it allows for a fully analytic solution to anti-aliased 3D mesh rendering on parallel hardware. Building on recent works in computational geometry, we present a new edge-triangle intersection algorithm and a novel method to complete the boundaries of all visible triangle regions after a hidden line elimination step. All stages of the method are embarrassingly parallel and easily implementable on parallel hardware. A GPU implementation is discussed and performance characteristics of the method are shown and compared to traditional sampling-based rendering methods.Item Animal Locomotion Controllers From Scratch(The Eurographics Association and Blackwell Publishing Ltd., 2013) Wampler, Kevin; Popovic, Jovan; Popovic, Zoran; I. Navazo, P. PoulinThere exists a large body of research devoted to creating real time interactive locomotion controllers which are targeted at some specific class of character, most often humanoid bipeds. Relatively little work, however, has been done on approaches which are applicable to creatures with a wide range of different forms - partially due to the lack of easily obtainable motion-capture data for animals and fictional creatures. We show how a locomotion controller can be created despite this dearth of data by synthesizing it from scratch. Our method only requires as input a description of the shape of the animal, the gaits which it can perform, and a model of the task or tasks for which the controller will be used. From this a sequence of motion clips are automatically synthesized and assembled into a motion graph which defines a physically realistic controller capable of performing the specified tasks. The method attempts to minimize the computational time required to generate this controller and we show its effectiveness at creating interactive controllers for a range of tasks for bipeds, tripeds, and quadrupeds.Item Animated 3D Line Drawings with Temporal Coherence(The Eurographics Association and Blackwell Publishing Ltd., 2013) Xu, Xiang; Seah, Hock Soon; Quah, Chee Kwang; B. Levy, X. Tong, and K. YinProducing traditional animation is a laborious task where the key drawings are first drawn by artists and thereafter inbetween drawings are created, whether it is by hand or computer-assisted. Auto-inbetweening of these 2D key drawings by computer is a non-trivial task as 3D depths are missing. An alternate approach is to generate all the drawings by extracting lines directly from animated 3D models frame by frame, concatenating and rendering them together into an animation. However, animation quality generated using this straightforward method bears two problems. Firstly, the animation contains unsatisfactory visual artifacts such as line flickering and popping. This is especially pronounced when the lines are extracted using high-order derivatives, such as ridges and valleys, from 3D models represented in triangle meshes. Secondly, there is a lack of temporal continuity as each drawing is generated without taking its neighboring drawings into consideration. In this paper, we propose an improved approach over the straightforward method by transferring extracted 3D line drawings of each frame into individual 3D lines and processing them along the time domain. Our objective is to minimize the visual artifacts and incorporate temporal relationship of individual lines throughout the entire animation sequence. This is achieved by creating correspondent trajectory of each line from each frame and applying global optimization on each trajectory. To realize this target, we present a fully automatic novel approach, which consists of (1) a line matching algorithm, (2) an optimizing algorithm, taking into account both the variations of numbers and lengths of 3D lines in each frame, and (3) a robust tracing method for transferring collections of line segments extracted from the 3D models into individual lines. We evaluate our approach on several animated model sequences to demonstrate its effectiveness in producing line drawing animations with temporal coherence.Item Animation-Aware Quadrangulation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Marcias, Giorgio; Pietroni, Nico; Panozzo, Daniele; Puppo, Enrico; Sorkine-Hornung, Olga; Yaron Lipman and Hao ZhangGeometric meshes that model animated characters must be designed while taking into account the deformations that the shape will undergo during animation. We analyze an input sequence of meshes with point-to-point correspondence, and we automatically produce a quadrangular mesh that fits well the input animation. We first analyze the local deformation that the surface undergoes at each point, and we initialize a cross field that remains as aligned as possible to the principal directions of deformation throughout the sequence. We then smooth this cross field based on an energy that uses a weighted combination of the initial field and the local amount of stretch. Finally, we compute a field-aligned quadrangulation with an off-the-shelf method. Our technique is fast and very simple to implement, and it significantly improves the quality of the output quad mesh and its suitability for character animation, compared to creating the quad mesh based on a single pose. We present experimental results and comparisons with a state-of-the-art quadrangulation method, on both sequences from 3D scanning and synthetic sequences obtained by a rough animation of a triangulated model.Item AOI Rivers for Visualizing Dynamic Eye Gaze Frequencies(The Eurographics Association and Blackwell Publishing Ltd., 2013) Burch, Michael; Kull, Andreas; Weiskopf, Daniel; B. Preim, P. Rheingans, and H. TheiselIt is difficult to explore and analyze eye gaze trajectories for commonly applied visual task solution strategies because such data shows complex spatio-temporal structure. In particular, the traditional eye gaze plots of scan paths fail for a large number of study participants since these plots lead to much visual clutter. To address this problem we introduce the AOI Rivers technique as a novel interactive visualization method for investigating timevarying fixation frequencies, transitions between areas of interest (AOIs), and the sequential order of gaze visits to AOIs in a visual stimulus of an eye tracking experiment. To this end, we extend the ThemeRiver technique by influents, effluents, and transitions similar to the concept of Sankey diagrams. The AOI Rivers visualization is complemented by linked spatial views of the data in the form of heatmaps, gaze plots, or display of the visual stimulus. The usefulness of our technique is demonstrated for gaze trajectory data recorded in a previously conducted eye tracking experiment.Item Approximating Functions on a Mesh with Restricted Voronoï Diagrams(The Eurographics Association and Blackwell Publishing Ltd., 2013) Nivoliers, Vincent; Lévy, Bruno; Yaron Lipman and Hao ZhangWe propose a method that computes a piecewise constant approximation of a function defined on a mesh. The approximation is associated with the cells of a restricted Voronoï diagram. Our method optimizes an objective function measuring the quality of the approximation. This objective function depends on the placement of the samples that define the restricted Voronoï diagram and their associated function values. We study the continuity of the objective function, derive the closed-form expression of its derivatives and use them to design a numerical solution mechanism. The method can be applied to a function that has discontinuities, and the result aligns the boundaries of the Voronoï cells with the discontinuities. Some examples are shown, suggesting potential applications in image vectorization and compact representation of lighting.Item An Area-Preserving Parametrization for Spherical Rectangles(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ureña, Carlos; Fajardo, Marcos; King, Alan; Nicolas Holzschuch and Szymon RusinkiewiczWe present an area-preserving parametrization for spherical rectangles which is an analytical function with domain in the unit rectangle [0;1]2 and range in a region included in the unit-radius sphere. The parametrization preserves areas up to a constant factor and is thus very useful in the context of rendering as it allows to map random sample point sets in [0;1]2 onto the spherical rectangle. This allows for easily incorporating stratified, quasi-Monte Carlo or other sampling strategies in algorithms that compute scattering from planar rectangular emitters.Item ArtiSketch: A System for Articulated Sketch Modeling(The Eurographics Association and Blackwell Publishing Ltd., 2013) Levi, Zohar; Gotsman, Craig; I. Navazo, P. PoulinWe present ArtiSketch - a system which allows the conversion of a wealth of existing 2D content into 3D content by users who do not necessarily possess artistic skills. Using ArtiSketch, a novice user may describe a 3D model as a set of articulated 2D sketches of a shape from different viewpoints. ArtiSketch then automatically converts the sketches to an articulated 3D object. Using common interactive tools, the user provides an initial estimate of the 3D skeleton pose for each frame, which ArtiSketch refines to be consistent between frames. This skeleton may then be manipulated independently to generate novel poses of the 3D model.Item Artistic QR Code Embellishment(The Eurographics Association and Blackwell Publishing Ltd., 2013) Lin, Yi-Shan; Luo, Sheng-Jie; Chen, Bing-Yu; B. Levy, X. Tong, and K. YinA QR code is a two-dimensional barcode that encodes information. A standard QR code contains only regular black and white squares, and thus is unattractive. This paper proposes a novel framework for embellishing a standard QR code, to make it both attractive and recognizable by any human while maintaining its scanability. The proposed method is inspired by artistic methods. A QR code is typically embellished by stylizing the squares and embedding images into it. In the proposed framework, the regular squares are reshaped using a binary examplar, to make their local appearances resemble the example shape. Additionally, an error-aware warping technique for deforming the embedded image is proposed; it minimizes the error in the QR code that is generated by the embedding of the image to optimize the readability of the code. The proposed algorithm yields lower data error than previous global transformation techniques because the warping can locally deform the embedded image to conform to the squares that surround it. The proposed framework was examined by using it to embellish an extensive set of QR codes and to test the readability with various commercial QR code readers.Item As-Rigid-As-Possible Distance Field Metamorphosis(The Eurographics Association and Blackwell Publishing Ltd., 2013) Weng, Yanlin; Chai, Menglei; Xu, Weiwei; Tong, Yiying; Zhou, Kun; B. Levy, X. Tong, and K. YinWidely used for morphing between objects with arbitrary topology, distance field interpolation (DFI) handles topological transition naturally without the need for correspondence or remeshing, unlike surface-based interpolation approaches. However, lack of correspondence in DFI also leads to ineffective control over the morphing process. In particular, unless the user specifies a dense set of landmarks, it is not even possible to measure the distortion of intermediate shapes during interpolation, let alone control it. To remedy such issues, we introduce an approach for establishing correspondence between the interior of two arbitrary objects, formulated as an optimal mass transport problem with a sparse set of landmarks. This correspondence enables us to compute non-rigid warping functions that better align the source and target objects as well as to incorporate local rigidity constraints to perform as-rigid-as-possible DFI. We demonstrate how our approach helps achieve flexible morphing results with a small number of landmarks.